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Abstract

This paper describes an algorithm for the determination of zone content type of a given zone within a document image. We take a
statistical based approach and represent each zone with 25 dimensional feature vectors. An optimized decision tree classifier is used to
classify each zone into one of nine zone content classes. A performance evaluation protocol is proposed. The training and testing data
sets include a total of 24,177 zones from the University of Washington English Document Image database Ill. The algorithm accuracy is

98.45% with a mean false alarm rate of 0.50%.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction : :
document representation enables document interchange,

editing, browsing, indexing, filing, and retrieval. The zone

A document is varied in content. It can contain text, math, A : .
, . classification technique plays the key role in the success
figure zones, etc. Each of these zones has its own char-

- . of such a document understanding system. Not only is it
acteristic features. For example, a math zone may <:ontamu$€lcul for successive applications such as OQR table
symbols like=, +, 3", [, ..., which a text zone may not pp ’

contain. Every page contains numerous zones. Each zone iémderstanqu3], etc., but it can be used to assist and

specified by a rectangular box which encloses the zone andval'd""te docgment segmentatlor_L_
In the design of a zone classifier, a set of measurements

its zone type. This paper describes an algorithm for deter- are made on the zone. Each measurement is a feature.

mination of the zone type given a document image and the Some features are calculated along the horizontal, vertical
coordinates of the leftmost-top and rightmost-bottom points ™ . . ng o ' '
right-diagonal and left-diagonal directions of the zone. We

of the zones on the document image. design a set of signature-like background analysis struc-
A complete document image understanding system can 9 gnature 9 y
ture to capture the statistical properties on the background.

transform paper documents into a hierarchical representa-

tion of their structure and conterit]. The transformed A feature vector of the zone is a tuple whose compo-
nents are the measured values from the zone. Two sets of

feature vectors are studied in our research. We employ a
statistically based decision tree classifié} for the clas-
*Corresponding  author. UCLA Mathematics Department, Box gification. Several methods are used in the decision tree
3?351%52’0'622 7’2”99'95' CA 90095, USA. Tel.. +13102067334; fax: c|assifier optimization to prevent the data over-fitting prob-
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(Y. Wang), yun@image.cs.qc.edd.T. Phillips), haralick@gc.cuny.edu  constraints in the classification for some zones. For some

(R.M. Haralick). types of zones, we use a hidden Markov model (HMM) and
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classify with a Viterbi algorithn{7] to get optimal classifi- hierarchy, given an input document, consists of two major
cation results. steps. The first step is the correct detection and partitioning
In Section 7, we describe a performance evaluation pro- of entities within the hierarchy, and the second step is the
tocol for zone content classification experiments. The per- correct classification of those detected entitj@6]. The
formance of the classifier is calculated from a contingency zone content classification technique plays a key role in the
table. An entry,N; ;, in the contingency table indicates the second step, logical page structure analysis.
number of zones in the document image data base that are By the condition of whether or not the method consid-
identified in the ground truth as classnd assigned by the ers segmentation, the algorithms can be classified into two
decision rule to clasg. major categories: (1) independent of segmentation; (2) in-
In our zone content classification experiment, the zones cluding segmentation. The methods belong to the first cat-
are the zone groundtruth entities from University of Wash- egory concentrate on extracted regions. The methods in the
ington English Document Image Database Il (UWCDROM second category usually employ a bottomfu@] document
[11) [8]. It includes 1600 scientific and technical document segmentation method first and then classify the segmented
images with a total of 24,177 zones. The zone classes weregions in the second phase. Our algorithm falls into the first
consider are text with font size 18 pt, text with font size  category.
>19pt, math, table, halftone, map/drawing, ruling, logo, By the strategies or methods in which algorithms are used
and others. We report the experimental results using dif- in zone content classification, the algorithms can be clas-
ferent feature sets, with and without classifier optimization. sified into two major categories: (1) rule-based/grammar-
With the classifier optimization and the reduced feature set, driven and (2) statistical-based (either parametric and non-
our algorithm accuracy rate is 98.45% and the mean falseparametric). The rule-based/grammar-driven algorithms use
alarm rate is 0.50%. a set of ad hoc rules or pre-defined syntax rules of the gram-
There is a constant interest in the document image anal-mars to derive decisions. The ad hoc rules or the syntax of
ysis field on document zone content classification problem. the grammar are fixed and empirically determined. In the
However, most of common approaches focus on specific typestatistical-based algorithms, the required free parameters that
zone extraction and recognition. For example, Xiao and Yan are used in the decision process are obtained by an off-line
[9] worked on text region extraction problem, Zanibbi et al. training processes.
[10] on Mathematics Expression recognition, Hu ef2jl.on In the literature, some papers present algorithms for doc-
table extraction problem, Chen et Hl1] and Phanj12] on ument page classificatiqi7—19] The goal of their work is
logo detection, Li et al[13] on image (halftone) extraction to classify the whole page into different classes, such as “ti-
problem, Futrelle et al[14] on diagram (drawing) extract tle page”, “index”, “regular page”, et¢19]. Although they
and classification problem, etc. To the best of our knowl- use a similar technique to our approach, our work focuses on
edge, our group is the first group who systematically study the functional labeling of segmented regions. So the discus-
the zone content classification and conduct experiments onsion of page classification is out of the scope of this paper.
a large data set, UW Document Image Databasg8]IIOur It is also interesting to note that many logical page struc-
research achieves very good results and should be useful tdure analyses are task oriented. For example, table under-
many researches in document image analysis research fieldstanding algorithms are aimed at extracting table regions
The rest of this paper is divided into 8 parts. In Section 2, a from non-table regions and the systems to facilitate OCR are
literature review is given. In Section 3, a formal zone content only designed to separate text from non-text. They are solv-
classification problem statement is presented. In Section 4,ing only a part of the zone content classification problem.
we give our background analysis structure analysis, and aThe methods they employ are similar to ours and their results
detailed description of two sets of features we studied in may be compared with ours. The following are a handful of
the experiments. In Section 5, the decision tree classifier selected algorithms within the above defined categories.
and our methods to eliminate data over-fitting are described. Sivaramakrishnan et aJ20] extracted features for each
Section 6 describes how we incorporated content constraintzone such as run length mean and variance, spatial mean and
to improve classification results using the HMM model. The variance, fraction of the total number of black pixels in the
performance evaluation protocol and experimental resultszone, and the zone width ratio for each zone. The decision
are reported in Section 7. Our conclusion and statement oftree classifier was used to assign a zone class to one of nine
future work are discussed in Section 8. classes on the basis of its feature vector. The experiments
were conducted on 979 scientific document pages with a
total of 13,726 zones drawn from UW-I datab4&&]. The

2. Literature review accuracy rate was 96.67% and mean false alarm rate was
1.15%.

The problems of segmenting document pages into ho- Krishnamoorthy et a[22] combined the nested X-Y tree
mogeneous regions and assigning functional labels to eachdecomposition of rectangles into rectangles with recursive
region are of importance in automatic document under- horizontal and vertical application of a publication-specific
standing systemg§l,15]. The construction of a document “block grammar” to determine the major logical compo-
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nents of technical articles. This model-driven approach iso- formed geometric structure analysis successfully on more
lates specific document components for selective OCR. Inthan 99% of the test images.
their experiments, more than 20 types of document entities Jain et al[28] presented a hierarchical approach for ex-
can be identified in sample pages from tB& Journal of tracting homogeneous regions from on-line handwritten doc-
Research and Developmeantd IEEE Transactions on Pat-  uments. Their algorithm identifies and processes ruled and
tern Analysis and Machines Intelligencehe drawback of  unruled tables, text and drawings. The on-line document is
this method is the skew sensitivity and the effort required to first segmented into regions with only text strokes and re-
construct the grammars in lex/yacc notation. gions with both text and non-text strokes. The text region is
Antonacopoulos and Ritching23] presented a back- further classified as unruled table or plain text. Stroke clus-
ground analysis (white tiles) based algorithm. It can repre- tering is used to segment the non-text regions. Each non-text
sent and classify complex-shaped printed region. Based onsegment is then classified as drawing, ruled table and under-
the description of white space inside regions, it classified a lined keyword using stroke properties. Their experimental
given region into text, graphics, line art regions. data was collected from 123 different people without any
Fan and Wang?24] presented a document block classifi- restriction on the style or content of data. About 99.9% of
cation algorithm using density feature and connectivity his- the text strokes were correctly classified. A classification ac-
togram. The attribute of each segmented block is divided curacy of 85.0% was achieved on a data set containing 105
into three classes: text, graphics, and image. First, they uti-unruled tables and 35 text regions.
lized the density feature to determine whether the block is  In their newspaper segmentation w§2®], Mitchell et al.
a text or non-text block. If the block is classified as a non- used a bottom-up approach to segment the image into pat-
text block, the connectivity histogram is employed to fur- terns. Then each pattern is classified into one of seven types,
ther classify it into graphics or image block. They conducted namely, text, title, inverse text, photo, graphic/drawing, ver-
their experiments on 30 English and Chinese documents.tical line, and horizontal line. The patterns were classified

Their average classification accuracy was 94%. using a series of rules based on the pattern size, shape, black
Jain and Yy25] developed a bottom-up method to parti- pixel numbers and run-length characteristics. They submit-
tion a page into columns ¢éxt, drawings imagestable re- ted their results to thé&irst International Newspaper Seg-

gions andrulers. Following the application of a hierarchical mentation ConteqB0].
Hough transform to connected components, the estimated Harit et al. [31] present a model based document im-
skew is accommodated by introducing generalized text lines. age segmentation scheme that uses XML_DTDs (eXtensi-
Foreground pixels are grouped into rectangular blocks with ble Mark-up Language-Document Type Definition). Given
adjacent same-length horizontal runs preserved as nodes ira document image, the algorithm has the ability to select the
a block adjacent graph (BAG). The BAG nodes are succes-appropriate model. A wavelet based tool was designed for
sively grouped into connected components, text lines, anddistinguishing text from non-text regions and characteriza-
region blocks. The segmented regions were classified intotion of font sizes. The model based analysis scheme makes
text, image, table, and drawing classes using empirical rulesuse of the wavelet tool for identifying the logical compo-
and thresholds. Selected results from performance tests oments of a document image. Overall, they obtained about a
150 varied page images were illustrated. 90% correct segmentation and identification results for doc-
Le et al.[26] proposed an automated labeling of zones uments of different languages.
from scanned images with labels such as titles, authors, af- Some researchers used HMM for document image seg-
filiations, and abstracts. The labeling is based on featuresmentation and OCR system. Kopec and CHajproposed
calculated from optical character recognition (OCR) output, Document Image Decodivghich unifies some aspects of re-
neural network models, machine learning methods, and a seprocessing, layout analysis and character recognition. DID is
of rules that is derived from an analysis of the page layout a communication theory approach to document image recog-
for each journal and from generic typesetting knowledge for nition patterned after the use of HMMs in speech recogni-
English text. tion. The decoding process, based on dynamic programming,
Lee et al.[27] presented a knowledge-based method for attempts to identify the most likely sequence of transitions
sophisticated geometric structure analysis of technical jour- from the observed pixels. A model with 1700 nodes and
nal pages. The knowledge base encodes geometric characsver 600 branches was run on 48 columns from 10 pages
teristics that are not only common in technical journals but from the Yellow Pages in about 36 h. The error rate on the
also publication-specific in the form of rules. It takes the listings was less than 2% for names and less than 0.5% for
hybrid of top-down and bottom-up techniques and consists telephone number.
of two phases: region segmentation and identification. They Bazzi et al.[32] drew on their HMM tools for speech
used sets of rules to do region identification. The resulting and handwritten-character recognition to develop a multifont
regions classes includext ling equation image drawing reader with language-independent algorithms and shape fea-
table andruler. Their experimental results with 372 images tures, and language-dependent orthographic rules, character
scanned from théEEE Transactions on Pattern Analysis models, lexicons, and grammars. Their system was tested on
and Machine Intelligencehowed that the method has per- UWCDROM Il and the DARPA Arabic OCR Corpus. The
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results indicated that using a 3W0-word English lexicon  we consider two different assumptions made on the joint
and word-bigram frequencies reduces the error rate by aboutprior probability functiong33]. One set,#1, is with an in-
a factor of three over use of character bigrams and trigramsdependent assumption and the other.get,is with Markov
alone. Combining them gives almost another factor of two. dependence assumption. We assume the labels of a zone in
The error rate on English was about three times lower than set.¥; contributes no information relative to the label of an-
on Arabic. other zone in se¥’>, and measurements of a zone in $ét

Li et al. [13] proposed an algorithm that models images contribute no information relative to the label of any zone
by two-dimensional HMMs. The HMM considers feature in set%>. We have
vectors statistically dependent through an underlying state
process assumed to be a Markov mesh, which has transition” (/ (/)|V (7)) [] prerolvia)
probabilities conditioned on the states of neighboring blocks i=12
from both horizontal and vertical directions. The dependency =[] prenivsi. (2)
in two dimensions is reflected simultaneously. They demon-

strated their methods on both aerial and document images.
We have two similar conditions as follows:

i=12

3. Problem statement 1. Conditioned on all the measurements, the label of a zone
contributes no information relative to the label of another
Let .7 be a set of zone entities in a given document page. zone;
Let .# be a set of content labels, such as text, table, math, 2. Measurements of a zone contribute no information rela-

etc. The functionf : o/ — & associates each element tive to the label of another zone.

of .o/ with a label. The functionV : o« — A spe;cifies We assume conditions, 2 are true for set¥; and

measurements made on each elementofvhereAdisthe oy condition 2 holds for set/,. We also assume the

measurement space. elements of set”, are {Z1, Za, ..., Zs}, wheres is the
The zone content classification problem can be formulated , o number in,. We can haveP(f(¥1)|V(¥1)) =

as follows:Given a zone set/ and a content label se¥, M,eq. P(f(@)]|V(2) and

find a classification functiory : &/ — %, that has the v

maximum probability P(f(S2)|V(S2))

P(f()|V()). (1) = P(f(Z)IV(Zy), f(Zs-1), ..., f[(Z1))P(f(Zs-1)

Let 1 and.¥» be two exclusive and exhaustive subsets X \V(Zs-1), [(Zs=2), ... [(Z1)

of .. To consider context information in our classification, . fU(ZDIV(Z2)).
Analysis of voice/data m=4- (31t (0 o
(v analogy with the scenario concaming unlotied LANs) multiplexers with ARQ [B) = (B (O} -pl= (S} o
e boowaen s riorednins ey SCheme, based on a Markov 5.8 muiatm o
[cbo care D afthicacyaslin of schsicsforipporfil renewal process modelling D)= 1B+l 1T o)

(a) (b) (c)

(2) (i)

Fig. 1. lllustrates examples of nine zone content classes. (a) Text 1 class; (b) Text 2 class; (c) Math class; (d) Table class; (e) Halftone class;
(f) Map/drawing class; (g) Ruling class; (h) Logo class; (i) Others class.
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The problem in Eqg. (2) can be solved by maximizing each Definition 4. A horizontal blank block#' R = b, x b,,
individual probability for#; and.%». with lefttop vertex coordinatéx;1, yp1), iS alarge hori-

In our zone content classification experiment, the el- zontal blank blockf and only if it satisfies the following
ements in seteZ are the zone groundtruth entities from conditions:
UWCDROM-III document image databag8]. The ele-
ments of set? are text zone with font size<18pt, text e its row numbers and column numbers are large enough

with font size >19 pt, math, table, halftone, map/drawing, ~ compared with the current zone. Specificably/ C > 01,
ru|ing' |ogoy and others. The examp|es of each class are Wheref1 is 01 This number was statistically determined
shown inFig. 1 V(7) is a feature vector generated far by our experiment on another table data set;

wheret € /. Elements of set; are zones in the live- e It does not touch left or right side of the zone bounding
matter part and elements of s&b are zones in the header box, i.e.xp1 # x1 andxpy + be # x1+ C;

and footer parts in a given page. We used a decision tree
classifier to compute each individual probability in $é{

and use a HMM to model the dependency in.get

whereC is the column number in the zone.

Definition 5. A vertical blank block ¥"'R = b, x b,
with lefttop vertex coordinatéxp1, yp1), IS a large ver-

4. Features for zone content classification tical blank blockif and only if it satisfies the following
conditions:

In this section, first we give our new background analysis
structure definitions in Section 4.1. Second, we give our two ® !tS Tow number and column number are large enough

sets of features we studied in the experiments in Sections Compared with the current zone. Specificalyz mh and
4.2 and 4.3. b./mw > 02, wheremh andmw are the median height and

median width of text glyphs in the zon&: is empirically
determined as.4;

e It does not touch left or right side of the zone bounding
box, i.e.xp1 # x1 andxp1 + b. # x1+ C;

4.1. Background analysis structure definitions

Although some background analysis techniques can be
found in the literaturg34,35] none of them, to the best
of our knowledge, have extensively studied the statistical
characteristics of their background structure. Instead, they
mainly use heuristic rules on their background structure. We 4.2. Zone content classification features
define a new background analysis structure. Our background
analysis is based on some basic units: horizontal and vertical Every zone in the document is considered to be rect-
blank blocks. These signature-like features are designed toangular. Properties of each zone are used by the classifier
give us information on the distributions of the big foreground for the process of classification. For a given zone, we
chunks in a given document entity. We use several definitionsdesigned several groups of features such as run length

whereC is the column number in the zone.

to describe the structure. features, spatial features, autocorrelation features, back-
Assume black pixels are foreground and white pixels are ground features, text glyph feature etc. with a total of 69
background. features.
For each zone, run length and spatial features are com-
Definition 1. Let 2 represent &Zonewith R rows andC puted for each line along four different canonical directions:
columns. Let(x1, y1) be the coordinate of its lefttop vertex, horizontal, vertical, left-diagonal, and right-diagonal. These
I ={(r,c) e Zx Zx1<r<x1+ R, y1<c<y1+C}. four directions are shown iRig. 2 We use subscript, v,
andr to represent four directions. When discriminating fore-
Definition 2. Let p be a horizontal white run p = ground and background features is necessary, we use super-
((r1,c1)s ..., (ra, cn)), Where (ri,c;) € Z, ri = ri-1, script 0 and 1 to represent foreground and background fea-
ci=ci—1+1,fori =2, ...,n, and pixel(ri, c1), (ry, cn) tures, respectively. For examphér,nearﬁ represents back-

must have a black pixel or the zone border on its left and ground run length mean feature computed in horizontal di-
right side, respectively. For each run, we call the location rection.

of the starting pixel of the run and its horizontal length as  In the following, we describe each feature in detail.
Row(p), Column(p), and Lengtlip), respectively.

Definition 3. Let #R be a horizontal blank block 4.2.1. Run length features

H'R = (p1,..., pn), Where Rowp;) = Row(p;_1) + 1, A run is a list of contiguous foreground or background
Column(p;) = Column(p;_1), Length p;) = Length(p;_1), pixels in a given direction. Arun lengthis the num-
fori=2,...,n. Clearly, the same idea can be applied to de- ber of pixels in a given foreground or background run.

fine vertical white runandvertical white blank block? R. Our run length features include foreground/background
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Fig. 2. lllustrates the four directions in which we compute run length
and spatial features. (a) Horizontal; (b) vertical; (c) left-diagonal; (d)
right-diagonal.

run length mean and variance in each of the four
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1

fmean = —— Y 7l (15)
AL, rleAL}

rimear} = @ rl;ﬂ rl, (16)

rimear} = ﬁ rlng rl, (17)
AL}

rimearf = @ rl;ﬂ rl. (18)

. Foreground and background run length variance features
on the four directions in a given zone. They can be
obtained by calculating the mean of the squares of all
the run lengths in the zone and subtracting them by the
square of the run length mean. Specifically, they can be
computed by the equations below.

2
Zrle;%‘Lg rl

directions. rivar? = ¥ (rimearf)?, (19)
by
1. We denote the 8 sets including all the foreground and S o rl2
background run lengths on the four directions in a given rivar? = % — (rimearf)?, (20)
zone asZL?, LY, #L°, #L°, #L}, AL, #L} and |22Ly]
LY. The first group of run length features are total fore- > a0 ri?
ground and background run length number on the four  rivarp = ———— — (rimearf)?, (21)
directions in a given zone. Together we have 8 features. | 2L}
, 0 0 rlz
7L 3) rivar® = Zrienror” (rimearf)?, (22)
' | 2L
|22L?) @ '
2
0 Z PR 1 rl
| 2L ®) rivar} = ri;—LLf' — (rlmear})?, (23)
| 2L (6) "
2
|%L1| (7) 1 ZrleﬂL% rl 2
ALy, rivart = gL (rimeart)?, (24)
v
2L ®) 2
1 1 ZrlE%L} rl 2
| L} 9) rivar} = i (rimear)?, (25)
RL;
|2L;| (10) 2
1 Zrle%L} rl 2
2. Foreground and background run length mean featureson  flvar, = —aLy (rimear})?. (26)
four directions in a given zone. r
1 4.2.2. Spatial features
rimearf) = ALY > (11) Spatial features are designed to capture the foreground
' riear) pixel distribution information. We denote the foreground
1 pixel set in a given zone a& . Spatial meany, and spatial
rImearﬁ = IQ—LOI Z rl, (12) variance,§, can be defined as
TV el 1 1 5
) B 2 e 0= g 2 e w0t
rmearf = —~ >~ (13) peF peF
|Z2L;| ~ . . . . .
rleRLS wherew,, is a weight assigned to each 1-pixel. Since we
defined four different line directions, we can have four dif-
rimearf = 0—10 Z rl, (14) ferent definitions forw,. Hence, we have 8 spatial features
|2L7| including spatial mean and variance on four directions.

rle ALY
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(1.y1) spvay, = % > Iproj, ; x (wy, — spmeap)?], (31)
(xl,yl) leg’h
(x2,y2) spvar, = |;;| Z [proj, ; x (w, — spmeap)?], (32)
(x2,y2) ‘ e,
1 .
@ ®) spvaj = — > [proj;; x (w; — spmeap?], (33)
(xLy1) (2y2) 7127,
pvar, = — > [proj,; x (w, — spmeap)?]. (34)
17 e,
(x2,y2)N} Gy 4.2.3. Autocorrelation features
“ We compute 32 autocorrelation features by means of the

© @ fast Fourier transforni36]. The Fourier transform has wide
Fig. 3. lllustrates the coordinates of starting and ending points for different range of applications in image processing problems. Specif-
passes. (a) Horizontal pass; (b) vertical pass; (c) left-diagonal pass; (d)ically, we define four functions on each given pass, such as
right-diagonal pass. pass projection function, number of foreground runs func-
tion, run length mean function, and spatial mean function.
For the whole zone, we obtain a sequence of these func-
As shown inFig. 2, we have four different directions to  tion values. Then we compute the autocorrelation of these
compute run length. In each direction, we start the com- sequences and used some statistics as our autocorrelation
putation from a point on a zone border and continue in a features.
given direction until we hit another zone border again. We  |n the following, we describe the four functions first and
call such a computation route @ass For every pass the  follow a brief introduction of correlation computation using
sum of run lengths in the foreground gives thess projec-  the Fourier Transform. Then we define the total 32 autocor-
tion. Given one direction, each foreground pixel belongs and relation features we used in our experiments.
only belongs to one pass. We let the foreground pixel inthe 1. Denote the set of run length in a horizontal pdss,
same pass have the same weights so we have four differenks %L, ;. Similarly we can define?L,;, #L;;, ZL,, for
weight definitions according to each direction. As shown in other three direction passes. Among the four functions, the
Fig. 3 we denote the starting and ending pixel coordinates pass projection function has been defined earlier. They are

of a pass agx1, y1) and(xz, y2), respectively. denoted by
The weights for horizontal, vertical, left-diagonal, and )
right-diagonal directions are denoted &g, w,, w;, w;. projj, ; (35)
Their definitions are shown in the below equations. proj, ; (36)
Wp=Yy1, Wy=X1, W =XxX1+Yy1, W,=Yy2— X2 proj; (37)
Denote the set of passes in four directionss, %, proj,.; (38)

2, andZ,. For a pass, saj,, we denote its pass projection
asproj, ;. In our algorithm, we compute spatial means and
spatial variances as follows:

The function of the number of foreground runs on each pass
are straightforward.

1 | 2L, (39)
spmeap = = zy: wy, X Projy, ;, (27) \RLy | (40)
le?)y
L | 2L | (41)
spmeap == ) wy X Proj,,, @8) 2L, (42)
e,
The function of run length spatial mean on each pass can be
1 . [ :
spmeap= @ Z Wi x projj . (29) defined as folloyvs.
- ey Hmean, ; = proj, ; , 43
. ! |2 L1 (43)
spmeap= wy X Proj, ;, 30 roj
Pmean= 17 1523; r X POl (30) rimean, ; = PPt (44)

|E%Lv,l| ,



64

(Xhs,Yhs)  (Xhe, Yhe) (Xvs,Yvs)

*——o

I

(Xve, Yve)

() (b)

/ (Xle, Yle)

(XIs,YIs)

(Xrs,Yrs)
\ (Xre, Yre)

(c) (d)

Fig. 4. lllustrates the coordinates of starting and ending points for dif-
ferent run length. (a) Horizontal run length; (b) vertical run length; (c)
left-diagonal run length; (d) right-diagonal run length.

proj; ;
rimean ; = ———, 45
[2Ly,| (49)

proj,.;
rimean.; = =, 46
' |'%Lr,l| ( )

To define the spatial mean function for a line, we need define

pos andleng functions for a given run length. IRig. 4, we
show the starting and ending coordinates of run lengths in
different directions. For the run length shownHig. 4, the
definition of pos andleng functions are

POS, ;1 = Xns. l€NG, ,; = Xne — Xns,

POS, ;1 = Yu.s> lengv,rl = Yv,e — Yv,s1

PoOS ,; = x5, leng ,; =xie— x5,

POS. ;1 =Xrs, 1€NG. ) =Xre = Xrs- (47)

The spatial mean function for each line can be defined as

follows:
spmeap; = — Z POS, 1 x leng,
proj, ;1 rleRLj
1 * — proj
*5 > (eng,)* —proj, ¢ | |,
rleRLy
(48)
spmeap,; = - Z POt X 18NG
prOJv,rl rIE'%Lul
1 2 |
3 % e, )|
rleRL,
(49)
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spmeap, = — > pos,; x leng
Proi \ 5,
1 .
+3 > (deng,)*—proj,, | |, (50)
rleRL;,;
spmeapn; = - Z pos. ,; X Ieng’,rl
Proj;. rleRL,,
1 .
+5| X (eng,n* - proj,, (51)
rleRL,,

2. After we compute one function on each pass, we ob-
tain a sequence of values, indexed by the pass number. For
example, for the spatial mean function, we can get four se-

quencesspmeap ;, k =0,...,| L, — 1; spmeap, k =
0,...,1%y|—1;spmeap, k=0, ..., |Z,|—1; spmeap,,
k=0,...,|<|— 1. Similarly we can get all the sequences

for the other three functions.
We define the autocorrelation function on any sequence
gJj=0,....,N—1las

N-1
Autcor(g, 8); = ) 8j1k8k-
k=0

We can use this equation to compute the autocorrelation
functions of the functions defined earlier.

The discrete correlation theorersays that this discrete
correlation of one real functiog is one member of the
discrete Fourier transform pdi87]

Autcor(g, 8); ¢ GGy,

where Gy is the discrete Fourier transform gf and the
asterisk denotes complex conjugation.

Based on this theorem, we can compute autocorrelations
using the FFT as follows: FFT the data set, multiply the
transform by the complex conjugate of itself, and inverse
transform the produdB8]. The result, say;, will formally
be a complex vector of lengtN. However, it will have all
its imaginary parts zero since the original data set was real.
The components of; are the values of the correlation at
different lags, with positive and negative lags stored in the
wrap-around order: The correlation at zero lag iggnthe
first component; the correlation at lag 1 isri) the second
component; the correlation at lagl is in ry_3, the last
component; etc.

3. Using the FFT, we obtain a sequence of autocorrelation
function values. The index for which the autocorrelation
function goes to 10% of its maximum value is calculated.
Another feature of interest is the slope of the tangent to
the autocorrelation function values whose indexes are close
0. We used the general linear least squares mefB®idto
compute the slope of the points negar
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Fig. 5. lllustrates the example bounding boxes of large horizontal blank
blocks, large vertical blank blocks, and text glyphs. The so-called text
glyphs are labeled by a statistical glyph filter. (a) A table zone example;
(b) a map/drawing zone example.

We define 16 functions and take 2 statistics for each func-
tion. The autocorrelation group contributes 32 features to
the feature set.

4.2.4. Background features
Not only are foreground features important for zone con-
tent classification, but background features for each zone

Fig. 6. lllustrates the two directions in which we compute run length and
spatial features. (a) Horizontal; (b) diagonal.

@

feature. The number of text glyphs in this zomé, normal-
ized by the zone area is the text glyph feature.

w

The so-called text glyphs are not from any OCR output.
They are outputs of a statistical glyph filter. The inputs of this
filter are the glyphs after finding connected component op-
eration. The statistical glyph filter classifies each connected
component into one of two classes: text glyph and non-text
glyph. The filter uses a statistical method to classify glyphs
and was extensively trained on UWCDROM-III document
image databas&ig. 5illustrates two zone examples show-
ing the overlayed bounding boxes text glyphs.

4.2.6. Area feature

The area covered by the zoaea(Z), is calculated by
multiplying the length of the zone with its width. The length
and width of a zone can be obtained from the coordinates
of the zoneArea(Z) =R x C.

4.2.7. Column width ratio feature
It is a common observation that math zones and figure

are also important. We have considered the background runzones have a smaller width compared to text zones. For

length in run length feature set discussion. In this section,
we introduce two background oriented features.

The first feature is straightforward: a fraction of the num-
ber of black pixels to the total number of pixels in the zone,
br, br =# of background pixel# of total pixel

every zone, the quotient of the zone width and the width of
its column is calculated.

C

e ST T— (54)
Widtheolumn

ysis based technique. The basic background analysis structhe zone is.

tures are defined in Section 4.1.

The background feature is: The total area of large hori-
zontal and large vertical blank blocks,
A=) AreaR), (52)

Re#

where#={R|R=#'Ror V'R, #R C & and? R C Z}.
Fig. 5shows two examples with large horizontal and ver-
tical blank blocks.

4.2.5. Text Glyph feature
Most of zones have some text glyphs. The information

4.3. Zone content feature reduction

In the early stage of our research, we used as many fea-
tures as possible. After we obtained more understanding
about the zone content classification problem, we studied re-
ducing the number of features while still retaining the origi-
nal accuracy. We were able to reduce the feature vector size
from 69 to 25 and get comparable classification accuracy.

For each zone, run length and spatial features are com-
puted for each line along two different canonical directions:
horizontal, diagonal. These two directions are shown in

that how many text glyphs a given zone has is also an usefulFig. 6. We list below the reduced set of 25 features.
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Their full definitions can be found in Section 4.2. plesn’, . assigned td)i’eft whose true class isand we count
the number of samples, assigned ta2j; .. whose true
e Run length features. They are Egs. (7), (10), (11), (14), ng

(15), (18), (19), (22), (23) and (26); class isc, that is,
e Spatial features. They are Egs. (27), (30), (31), and (34). n n n
« Autocorrelation features. The function definitions are Egs. ' £¢ — Hup | f () st andw =},
(35), (38), (39), (42), (43), (46), (48), and (51). After . —#u | f() > andw! = c}.
we compute one function on each run segment, we geta <¢ eIk k
sequence of values, indexed by the run segment numbery gt ,
Using the Fast Fourier Transforf38], we can get the
autocorrelation functions value for every function. Each
feature is the slope of the tangent to the autocorrelation IS,
function values whose indexes are close to 0. M" M"
e Background feature, Eq. (52).
e Text glyph feature, Eq. (53). =) ni. and njp=3 n.
e Column width ratio feature, Eq. (54). e=1 =1

7, be the total number of samples assigne{g, and
n', be the total number of samples assignedz’ﬁ%ht, that

We define the purityPR, of the assignment made by node

o » n to be
5. Decision tree classifier

M t t
n n
5.1. Classification process PR, =) (n'Lc log nfc + ng, log nlfc> : (56)
c=1 L R
A decision tree classifier makes the assignment throughTh discrimi hreshold is ch h that i .
a hierarchical decision procedure. The classification process € |scr|m|n§1nt threshold Is ¢ osen suc that '.t maxi-
mizes the purity valu®R,. The purity is such that it gives

can be described by means of a tree, in which at least one . | hen the traini | letel
terminal node is associated with each class and non-termina® Max!Imum value when he training samples are completely

nodes represent various collections of mixed clagées sgparablle. The dexpaﬂsmn dOf the tree E)S stoplpeg if the ?Ie-
For the construction of a decision tree, we need a training tmsyo_n ru e‘:’ use.f ?; the nc;) es fc?nr)o.t efaptp 1€ totsma ;ar
set of feature vectors with true class labels. Uet {uy : raining Sets or 1t theé number of training Teature vectors a

k=1,..., N} be the unit-training set to be used to design the node is smaller than a predetermined value.
a binary tree classifier. Each umit has an associated mea- In the simplest form of a linear decision rulg {s lin- .
surementX; with known true class. At any non-terminal ear), one of the components of the measurement vector is
node, letQ" be the set oM" classes still possible for a unit taken and a set of candidate thrgshoﬂsare ca!culated fqr .
at noden. Let U" = {u! : k=1, ..., N"} be the subset of that compqnent. The one that gives the maximum purity is
N training units associated with node If the number of chosen. This process is repeated for all the components in
units for class in noden is denoted byV”, we must have the measurement vgctor. From the thresholds computed for
N =Y s a_II the com_ponents in the measurement vector, the one that
e=1"%er o yields maximum purity is chosen.

Now we describe how the decision rule works at node ~ \yhen a feature vector is input to a decision tree, a decision
n. Consider unit; which has measurement vectef. If is made at every non-terminal node as to what path the
the discriminant functionf (x;) is less than or equal 10 a  feature vector will take. This process is continued until the
threshold, them; is assigned to clas®| ., otherwise itis  feature vector reaches a terminal node of the tree, where a
assigned to CIaS@?ight' An assignment t@reft means that  class is assigned to it.

a unit descends to the left child node and an assignment

to erlight can be understood in a similar way. Given a dis- 5.2. Eliminating data over-fitting in decision tree classifier

criminant functionf, the units inU” are sorted in such a . » - . _

way that f (x}') < f (x7, ;) for k =1 N — 1. Letuw! In building a decision tree classifier, there is a risk of
< . =1..., . i 1S _

be the true classes associated with the measurement vectord€morizing the training data, in the sense that nodes near

" Then a set of candidate threshold% for the decision  the bottom of the tree represent the noise in the sample. As

rl]jles is defined by mentioned in5,6], some methods were employed to make

better class probability, such as building multiple trees and
; ; use the benefits of averaging, approximate significance tests,
Wiyl 7 wk} : (55) etc. In practice, we use one data set to build the tree and use
another independent data set to prune the tree to reduce the
For each threshold value, unif is classified by using the  possibilities of data over-fitting in the trained decision tree.
decision rule specified above. We count the number of sam-We used two simple methods to prune the decision tree.

A EL SR
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6. Finding the optimal sequence in¥’; by HMM

To further improve the zone classification result, we
make use of context constraint in some zone $ét, We
model context constraint as a Markov Chain. kebe el-
ement number in¥». Let Z = (Z4, Zo, ..., Zs), Where
Z, € Y2,t=1,...,s, be a zone sequence. We use a

Fig. 7. llustrates a decision tree node with its child nodes. Markov chain model to represent the context constraint of
the sequence of zone typé,= f(Z1), f(Z2), ..., f(Zy).
The probability P(f|Z) requires the zone type of the cur-

In Fig. 7, there is a node with its two child node€,, N, rent block, as well as the zone types of all the predecessor
are the number of class A vectors and class B vectors whichPlOCks.
arrive at this node. SimilarlyN,1 and N1, N,2 and Ny  P(f12) = ,e7 P(f(Z)| f(Zi—1),
are the number of class A vectors and class B vectors which
arrive at its left child node and its right node, respectively. [(Zi-2), ..., f(Z1)), (57)
VV\)/itehc;?scr?(;r;%ute two different error probabilities associated whereP (f(Z:)| f(Zi—1), f(Zi—2). ..., f(Z1)) is the prob-

Nal,Nbl Na2,Nb2

ability of f(Z;), under the condition that the zone types of
the previous zone aré(Z;_1), f(Z;—2), ..., f(Z1). For a

e Inherent error rate It is the error probability of setting  fjrst_order Markov chain, the current state is only dependent
this node as a leaf node, on the previous state, i.e.

e, PP (Zio1), f(Zi o), f(Z2)
a T = P(f(Z)If(Zi-1). (58)
o Effective error rateltis the error probability of expanding

this node with two children nodes, Given this conditional independence assumption, the

probability in Eq. (57) is simplified as
min(Nuly Np1) + min(NaZ’ Np2)

Ny + Ny P(f1Z) =1 zez P(f(Z)|f(Zi-1). (59)
The probability ratio is Therefore, the zone class probability with the context con-
straint

_ mMin(Ng1, Np1) + min(Ny2, Np2)
min(Ny, Np) ' Hz,ezP(V(Z)If(Z)P(f(2)) (60)

€1

The condition is that ié; > 0, wheref is a given threshold, is a simple HMM, shown irFig. 8 Rabiner[7] has a good
we will make this node as a leaf node, otherwise, we keep ytorial on the HMM and the reader may be referred to it.
its two child nodes. o _ In our problem, the hidden state are the zone content class
Another constraint condition is that we will stop expand- f(Z) which are not observable?(f(Z;)|P(Z;_1)), Z; €

ing this node if the probability of an arbitrary separat_ipn of 7 are calledransition probabilities and P( £ (Z1)) are the
vector numbers is less than a threshold. The probability can;,;tig| probabilities. A sequence of observatioris(Z) is

be computed as measured at each elementdnwhere P(V(Z;)| f(Z;)) are
NN Nao oMo observatlon_propab|llt|(_as. _ _

0y = No “Np _ “Na “Np We use Viterbi algorithnj7] to find the most likely state
CNartNer — ~NaztNp2 ’ sequencef (Z*), which can be used as the optimal solution

Nua+Np Na+Np

to Eg. (60). The recursion formula for computing the highest
probability along a single path, which endszt with the
zone contentclasg(Z;)=j, j=1,...,9,wherej=1,...,9
stands for the 9 possible zone content class, is the following,

whererZl is the combination number of the elementVgf
takenN,1 at a time. Ifex < J, whered is a given threshold,

s [PU@)= )PV Z)IPBL= ). i=1 o
iD= | maxsi 1 P(F(Z) = jIf (Zica = )PV EZDIf(Zi)), i1, (61)

we will stop expanding this node and make it as a leaf node. wheret and j are the possible zone content types.

The class label associated with the leaf node is the class The algorithm is an application of dynamic programming
associated with more training vectors at the node than anyfor finding a maximum probability path in a directed graph.
other class. We use array?;(j) to keep track of the argument which
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f(z1) f(Z2) D e _)@ Table 1

Possible true- and detected-state combination for two classes

True class Assigned class
v(zD) V@Z2) > e V(Zt) . 5
Fig. 8. lllustrates defined hidden Markov model(Z;), i =1,...,¢t, a Paa Pap
represents the label on each zone an&;), i =1, ..., t represent the b Ppq Pyp
measurement on each zone.
maximize the probability in Eq. (61): the first 8 parts and the state observation probability matrix

are estimated from decision tree classifier. We continue this
procedure, each time omitting one part from the training data
and then testing on the omitted part. Then the combined 9
part results are put together to estimate the total error rate
[4].

The output of the decision tree is compared with the zone
labels from the ground truth in order to evaluate the perfor-
mance of the algorithm. A contingency table is computed
to indicate the number of zones of a particular class label
that are identified as members of one of nine classes. The
rows of the contingency table represent the true classes and
the columns represent the assigned classes. The cell at row
r and columnc is the number of zones whose true class is
r while its assigned class &

We also compute four rates her€prrect Recognition
Rate (CR), Mis-recognition Ratgd MR), False Alarm Rate
(FR), Accuracy Rate(AR). Suppose we only have two
classes: a and b. The possible true- and detected-state com-
bination is shown inTable 1 We compute four rates for
class a as follows:

¥;(j) =arg n}a)[(si—l P(f(Zi))=jlf(Bi-a=1)]. (62)

At the end of the sequence, a backtracking step is per-
formed to retrieve the most probable path of zone content
classification.

To apply the Viterbi algorithnj7], three types of param-
eters have to be estimated: state transition probability ma-
trix, state observation probability matrix, and initial state
distribution vector. The state observation probability matrix
and initial state distribution vector are estimated from the
groundtruth data in the training data set. The state obser-
vation probability matrix are just the probability that each
given zone belongs to each class. This probability is readily
estimated from the training data set by decision tree struc-
ture. Suppose examplefalls to leaf! in the tree structure
T. We haveC mutually exclusive and exhaustive classes,
di,...,dc. A vector ¢, is associated with the leaf node
Its elements are the proportion of the number of clgss
training samples over the number of total training samples
falling to leaf!. We can compute the probability thatbe-

longs to each class by CR Py Py
Pc=djlx,T)=¢ ;. j=1....C. Faa + Fap Paa + Fap

The reason for us to use HMM on some set of zones FR— Pha . AR= Paa + Poy _
and not on the whole zone set is twofold. First, although Ppa + Ppp Paa + Pap + Ppp + Ppa

extracting the reading order from a given page is still an . . . .
. Using this performance evaluation protocol, we did exten-
open problem, getting the header and footer parts are much”. . . . o .
sive experiments with different conditions. In our experi-

easier. Second, some zone sequences are similar, e.g. tablé o .
: ment, the training and testing data set was drawn from the
map/drawing and halftone zones all tend to be followed by

text zones. In a small set of zones, not restricted to the scientific document pages in the University of Washington

header and footer parts, the sequence gives us more reliabl ocument image database “8.']- It has 1600 scientific and
information about the zone class. echnical document pages with a total of 24,177 zones. The

class labels for each of the zones are obtained from the
database. The header and footer parts are obtained from the

7. Experiments and results database while they are readily automatically segmented.
These zones belonged to nine different classes. Two text
7.1. Performance evaluation protocol classes of font size 4-18 pt and font size 19-32 pt), math,

table, halftone, map/drawing, ruling, logo and others. Below

A hold-out method is used for the error estimation in our &re the results of these experiments.
experiment. We divided the data set into 9 parts. We trained
the decision tree on the first 4 parts, pruned the tree using7.2. Experimental results with 69 features without
another 4 parts and then tested on the last 1 part. To trainoptimized decision tree and HMM
the Markov model, we trained on the first 8 parts and tested
it on the last 1 part. We estimate the state transition proba- If we assume conditional independence between the
bility and initial state distribution vector are estimated from zone classifications, the probability in Eg. (1) may be
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69

Table 2
Contingency table showing the number of zones of a particular class that are assigned as members of each possible zone class in UWCDROM-III
T1 T2 M T H M/D R L o CR(%) MR (%)
Tl 21,416 18 55 7 3 6 1 0 3 99.57 0.43
T2 16 99 3 0 5 1 2 0 1 77.95 22.05
M 174 0 564 3 0 15 2 0 0 74.41 25.59
T 17 0 2 151 0 37 2 0 0 72.25 27.75
H 5 0 0 0 289 32 0 1 11 85.50 14.50
M/D 30 0 19 17 19 632 0 0 3 87.78 12.22
R 9 0 0 0 0 2 421 0 1 97.23 2.77
L 5 1 2 1 2 1 0 1 0 7.69 92.31
O 11 0 0 0 32 21 0 0 6 8.57 91.43
FR (%) 10.01 0.08 0.35 0.12 0.26 0.49 0.03 0.00 0.08

The algorithm used 69 features and assumed conditional independence between the zone classifications. The decision tree classifier was.not optimized

In the table, Ty, To, M, T, H, MD, R, L, O represent text with font sizel 18pt, text with font size> 19 pt, math, table, halftone, map/drawing,
ruling, logo, others, respectively.

Table 3
Contingency table showing the number of zones of a particular class that are assigned as members of each possible zone class in UWCDROM-III
T1 T2 M T H M/D R L o] CR(%) MR (%)
T1 21,446 13 34 10 2 3 2 1 1 99.69 0.31
T2 16 106 1 0 2 1 1 0 1 82.81 17.19
M 49 2 683 3 0 17 1 2 1 90.11 9.89
T 9 0 4 159 1 38 1 1 2 73.95 26.05
H 1 2 0 1 369 12 0 1 2 95.10 4.90
M/D 8 0 20 30 18 630 1 1 2 88.73 11.27
R 6 0 2 0 1 3 419 0 0 97.22 2.78
L 5 5 0 1 0 1 1 0 0 0.00 100.00
O 3 2 1 2 4 3 0 0 7 31.82 68.18
FR (%) 3.64 0.10 0.26 0.20 0.12 0.33 0.03 0.02 0.04

The algorithm used 69 features and modeled context constraints with HMM in some zone set. It used an optimized decision tree classifier. In the table,
T1, To, M, T, H, MD, R, L, O represent text with font sizel 18 pt, text with font size> 19 pt, math, table, halftone, map/drawing, ruling, logo,

others, respectively.

decomposed as 7.4. Experimental results with feature reduction
P(f()IV (L)) = H P(f(@|V(2). In this experiment, the feature set only had 25 features
Tedd with optimized decision tree and HMM in sety. For a total

The problem can be solved by maximizing each individual ©f 24,177 zones, the accuracy rate was 98.45% and mean

probability P (£ (t)|V () in Eq. (63), wherer € /. false alarm rate was 0.50%, as showTable 4
Based on this idea, we compute a feature vector with 69
features for each zone. Then we applied decision tree classi7.5. HMM result analysis
fier in the data. Using our performance evaluation protocol,
the experimental result are shownTable 2 For a total of Because of the biased data, we applied HMM on header
24,177 zones, the accuracy rate was 97.53% and the meamnd footer regions instead of the whole page. Of a total of
false alarm rate was 1.26%. 24,177 zones, there are 21,512 text 1 class zones. The zone
numbers of table class, halftone class and map/drawing class
are 215, 388 and 710, respectively. Most table, halftone and
map/drawing zones are followed by a text zones. When we
apply HMM on the whole page, it tends to recognize table
In this experiment, we used the problem statement as Eq.zones as map/drawing zones since in the HMM training data
(2). With 69 features and optimized decision tree and HMM set the number of map/drawing zones is far larger than that
in set¥». For a total of 24,177 zones, the accuracy rate was of table zones. In the header/footer regions, there are only
98.52% and mean false alarm rate was 0.53%, as shown intext 1 class zones, text 2 class zones, rule class zones and
Table 3 others class zones. HMM solution gives us about 0.48%

(63)

7.3. Experimental results with 69 features with optimized
decision tree and HMM
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Table 4
Contingency table showing the number of zones of a particular class that are assigned as members of each possible zone class in UWCDROM-III
T1 T2 M T H M/D R L o CR(%) MR (%)
Tl 21,426 23 40 7 1 7 1 3 3 99.60 0.40
T2 19 104 1 0 1 2 0 0 1 81.25 18.75
M 47 1 686 2 0 18 1 1 2 90.50 9.50
T 6 0 4 162 0 35 0 1 2 77.14 22.86
H 1 0 1 1 345 27 0 0 0 92.00 8.00
M/D 2 3 20 20 28 648 1 1 5 89.01 10.99
R 3 0 2 0 0 2 424 0 1 98.15 1.85
L 7 3 1 0 0 0 0 2 0 15.38 84.62
(0] 4 0 2 0 2 7 1 0 6 27.27 72.73
FR (%) 3.34 0.12 0.30 0.13 0.13 0.42 0.02 0.02 0.06

The algorithm used 25 features and modeled context constraints with HMM in some zone set. It used an optimized decision tree classifier. In the table
T, To, M, T, H, MD, R, L, O represent text with font sizeC 18 pt, text with font size>19 pt, math, table, halftone, map/drawing, ruling, logo,

others, respectively.

Table 5 two directions6. It directly removed 32 features from the
lllustrates the performance evaluation results of three experiments feature vector.

Some features are redundant. For example, there were four
background features, background run length number in the
;g g;'gg é‘ég two given directions, a fraction of black pixels to the total
74 08.53 0.50 number of pixels and tot_al area of large horizontal and large

vertical blank blocks. Since the feature, total area of large
horizontal and large vertical blank blocks, is computed using
) ) the other three feature information, we eliminated the other
improvement in the 2274 zones of the header and footerihree features. There were two zone area related features,
regions. Although the improvementis very limited, we claim ;456 hounding box area and a fraction of the number of text
HMM would give us more improvement if the training data glyphs to the zone bounding box area. There are dependent

Section Accuracy rate (%) False alarm rate (%)

set were more balanced. features so we eliminated the first of them.
There were 16 features computed by autocorrelation func-
7.6. Feature reduction analysis tion. We defined four functions which are computed in two

different directions. The features are the slope of the tan-

In our early work, we used a feature vector consisting of gent to the autocorrelation function values whose indexes
69 features and got very good results. In our recent work, are close 0 and, the index for which the autocorrelation func-
we tried to reduce the unnecessary features from the featurdion goes to 10% of its maximum value. By the experiments,
vector while keeping good performance. By analysis and we eliminated 8 of them. From the experimental results, we
experiments, a total of 44 features were eliminated. believe our feature deduction was successful.

In Table 5 we compared the experimental results from  In our current work, we were mainly motivated to elim-
Sections 7.2, 7.3 and 7.4. The identical data set was used irinate the dependency between different features. We used
the experiments. Comparing the results, we can have someanalysis and experiments to select 25 features and achieved
conclusions. comparable experimental results. Because our feature vec-

.- S tor has a relatively small size, this simple scheme worked
e The decision tree optimization and context model help us .. . i
to gain improvement in both accuracy rate and false alarm fine with us. However, we understand that generally this
9 b y simple scheme does not work well for feature vector with
rate terms. X
. . : hundreds of features. In the future work, we believe that
e The dimension reduction from 69 features to 25 feature . . . -
it would be very interesting and beneficial to our research

does not affect the performance too much. It demonstrates. o .

, if we use some standard statistical techniques, such as Ad-
that we have a successful feature reduction. : -
aBoost[39], to systematically study and select statistically

The advantages for the decision tree optimization and con-significant features.
text model are straightforward. In the below paragraphs, we
try to give some reflection on our feature reduction work.

As shown inFig. 2 there were four feature computa- 7.7. Failed cases study
tion directions. Since the images in UWCDROM-III are all
deskewed already, there are no strong variations in differ- In Fig. 9, we show some failed cases of our experiment
ent directions. We changed the four directions to the currentin Section 7.3.Fig. Ya) is a Table zone misclassified as
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Fig. 9. lllustrates some failed examples. (a) Table zone misclassified as Math zone; (b) Map/drawing zone misclassified as Table zone; (c) Map/drawing
zone misclassified as Table zone; (d) Map/drawing zone misclassified as Halftone zone; (e) Halftone zone misclassified as Map/Drawing zone; (f) Others
zone misclassified as Halftone zone; (g) Math zone misclassified as Text 1 zone; (f) Math zone misclassified as Table zone.

Math zone due to the presence of many numericals anda Map/Drawing zone sometimes contains halftone-like part
operatorsFig. 9b) is a Map/Drawing zone misclassified as and a Halftone zone sometimes contains drawing-like part.
Table zone in that the content of the figure is just a table. Fig. Xf) is an example in which an others zone was misclas-
Fig. 9c) is another Map/Drawing zone misclassified as sified as Halftone zone. It is actually an advertisement part
Table case. The reason is that the subfigures are put in an the technical paper and it contains halftone-like paits.
two-dimensional grid which looks like a tableig. Xd), (e) 9(g) shows a most frequent error of our current system. Our
show two examples in which a Map/Drawing zone was clas- system classified a Math zone into Text 1 zone class. Some-
sified as Halftone zone(d), a Halftone zone was classified astimes our system lacks ability to detect such a single line
Map/Drawing zone(e). The reason for these two errors is thatmath equation zone which may include some description
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words. Fig. 9h) shows an error example in which a Math reduced more than a half after the reduction of the feature
zone was misclassified as a table zone because of its sparseumber.
nature. We also showed some failed cases. Many errors are due
By checking the experimental results, we also realized to the difficult discrimination between single line math and
some possible limitations of UWCDROM-III database. For text 1 class. Our future work include the development of
instance Fig. Ag) can hardly be classified as text or math math zone identification technique, modeling zone content
zone because it is a union of both classes. It may be a gooddependency feature in a more general zone set.
ideato allow a single zone, e.g. the one showiin 9g), to The motivation of our zone content classification research
have multiple classifications with appropriate weightings in lies in two parts. One part is that we want to find an efficient
the future document database collection and groundtruthingmethod to classify different zone types. We have achieved a
work. relatively high accuracy on a standard document database,
UWCDROM-III. The future work should go to more diffi-
cult document analysis, such as multiple colors of popular
8. Conclusion and future work magazines. The other part is that we want to take a system-
atic and complete study of statistical properties of document
Given the segmented document zones, correctly determin-zones. We firmly believe that the features we learned and
ing the zone content type is very important for the subse- the experiments we conducted would be useful for future
guent processes within any document image understandingmore challenging document analysis tasks. Certainly, most
system. This paper describes an algorithm for the determina-of modern magazines and publications, such as Time and
tion of zone type of a given zone within an input document Wired, are produced electronically and available already la-
image. In our zone classification algorithm, zones are repre-beled on the web. The document analysis researchers should
sented as feature vectors. Each feature vector consists of apply the knowledge learned in the traditional research top-
set of measurements of pre-defined properties. We consid-ics to these emerging research topics such as web document
ered two different feature vectors. One was with 69 features analysig40], hand written document understand[@g] and
and the other had only 25 features. A probabilistic model, ancient document archive indexifgl], etc. For practical
decision tree, is used to classify each zone on the basis ofpropose, the expected recognition ratios for these research
its feature vectof4]. Two methods are used to optimize should be no less than 90%.
the decision tree classifier to eliminate the data over-fitting
problem. To enrich our probabilistic model, we incorporate
context constraints for certain zones within their neighbor- References
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