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Abstract

Face recognition and many medical imaging applica-
tions require the computation of dense correspondence vec-
tor fields that match one surface with another. In brain
imaging, surface-based registration is useful for tracking
brain change, and for creating statistical shape models of
anatomy. Based on surface correspondences, metrics can
also be designed to measure differences in facial geome-
try and expressions. To avoid the need for a large set of
manually-defined landmarks to constrain these surface cor-
respondences, we developed an algorithm to automate the
matching of surface features. It extends the mutual infor-
mation method to automatically match general 3D surfaces
(including surfaces with a branching topology). We use dif-
feomorphic flows to optimally align the Riemann surface
structures of two surfaces. First, we use holomorphic 1-
forms to induce consistent conformal grids on both sur-
faces. High genus surfaces are mapped to a set of rectan-
gles in the Euclidean plane, and closed genus-zero surfaces
are mapped to the sphere. Next, we compute stable geo-
metric features (mean curvature and conformal factor) and
pull them back as scalar fields onto the 2D parameter do-
mains. Mutual information is used as a cost functional to
drive a fluid flow in the parameter domain that optimally
aligns these surface features. A diffeomorphic surface-to-
surface mapping is then recovered that matches surfaces in
3D. Lastly, we present a spectral method that ensures that
the grids induced on the target surface remain conformal
when pulled through the correspondence field. Using the
chain rule, we express the gradient of the mutual informa-
tion between surfaces in the conformal basis of the source
surface. This finite-dimensional linear space generates all
conformal reparameterizations of the surface. Illustrative
experiments apply the method to face recognition and to the
registration of brain structures, such as the hippocampus
in 3D MRI scans, a key step in understanding brain shape
alterations in Alzheimer’s disease and schizophrenia.

1. Introduction

Many face recognition algorithms have been proposed in
the last few decades [24]. Several approaches (e.g., “eigen-
face” methods) encode patterns of geometric and intensity
variation between faces, and compute metrics to determine
the degree of differences between individual faces. Related
work has focused on image matching for tracking facial
features in video images. However, all 2D (image-based)
face recognition systems are somewhat sensitive to facial
expressions and illumination conditions. 3D geometric sur-
face matching can solve these problems and may offer better
recognition performance.

Surface models are also widely used in medical imaging
to assist in data visualization, nonlinear image registration,
and surface-based signal processing or statistics. Surface
models are often generated in computational anatomy stud-
ies to support computations, e.g., when statistically com-
bining or comparing 3D anatomical models across subjects,
or mapping functional imaging parameters onto anatomical
surfaces. Often the comparison of data on two anatomi-
cal surfaces is required, and a correspondence field must be
computed to register one surface nonlinearly onto the other.
Multiple surfaces can be registered nonlinearly to construct
a mean shape for a group of subjects, and deformation map-
pings can encode shape variations around the mean. This
type of deformable surface registration has been used to de-
tect developmental and disease effects on brain structures
such as the corpus callosum and basal ganglia [26], the hip-
pocampus [7], and the cortex [27]. Nonlinear matching of
brain surfaces can also be used to track the progression
of neurodegenerative disorders such as Alzheimer’s dis-
ease [7], to measure brain growth in development [26], and
to reveal directional biases in gyral pattern variability [19].

Surface registration has numerous applications, but a
direct mapping between two 3D surfaces is challenging
to compute. Often, higher order correspondences must
be enforced between specific anatomical points, curved
landmarks, or subregions lying within the two surfaces.



One common way to achieve this is to first map each of
the 3D surfaces to canonical parameter spaces such as a
sphere [11, 3] or a planar domain [20]. The surface cor-
respondence problem can then be addressed by computing
a flow in the parameter space of the two surfaces [26, 9],
which induces a correspondence field in 3D. Furthermore,
correspondences may be determined by using a minimum
description length (MDL) principle, based on the compact-
ness of the covariance of the resulting shape model [10].
Anatomically homologous points can then be forced to
match across a dataset. Recently, Twining et al. [28] pro-
posed a theoretical framework to unify groupwise image
registration and average model construction. In their ap-
proach, an information-based model of the correspondences
among a group of images becomes a part of the registration
process.

By the Riemann uniformization theorem, all surfaces
can be conformally embedded in a sphere, a plane or a
hyperbolic space. The resulting embeddings form special
groups. Using holomorphic 1-forms and critical graphs,
global conformal parameterization [15] can also be used to
conformally map any high genus surface (i.e., a surface with
branching topology) to a set of rectangular domains in the
Euclidean plane. In this paper, we show how to use con-
formal parameterizations to assist in the matching of arbi-
trary 3D face and anatomical surfaces. Mutual information
is used to drive a diffeomorphic fluid flow that is adjusted
to find appropriate surface correspondences in the param-
eter domain. In this study, we chose the mean curvature
and the conformal factor of the surfaces as the differetial
geometric features to be aligned, as these are intrinsic and
stable. These choices are purely illustrative. In fact, any
scalar fields defined on the surfaces could be matched, e.g.,
cortical thickness maps, or even functional imaging signals
or metabolic data. Since conformal mapping and fluid reg-
istration techniques generate diffeomorphic mappings, the
3D shape correspondence established by composing these
mappings is also diffeomorphic (i.e., provides smooth one-
to-one correspondences).

We also present a spectral approach for ensuring that the
grid induced on the target surface by the correspondence
field, remains conformal. Grid orthogonality is advanta-
geous for accurate numerical discretization of PDEs or for
signal processing on the resulting surface meshes. For high
genus surfaces, the global conformal parameterization is not
unique and all the conformal parameterizations form a lin-
ear space. The degrees of freedom in this space of con-
formal grids are tuned to maximize the mutual information
energy of features between the two surfaces. Because the
conformal structure is intrinsic and the conformal parame-
terization continuously depends on the Riemannian metric
on the surface, our method is also stable and computation-
ally efficient.

1.1. Previous Work

Some researchers [17, 21] incorporate a 3D model in
face recognition research. Bronstein et al. [5] propose a
3D face recognition approach based on geometric invari-
ants to compute isometric deformations. Several variational
or PDE-based methods have been proposed for match-
ing surfaces. Surfaces may be represented by parametric
meshes [11], level sets, or both representations [20]. An-
genent et al. [2, 1] represent the Laplace-Beltrami operator
as a linear system and implement a finite element approxi-
mation for parameterizing brain/colon surfaces via confor-
mal mapping. Gu et al. [13] found a unique conformal map-
ping between any two genus zero manifolds by minimizing
the harmonic energy of the map. Gu and Vemuri [12] also
matched 3D shapes by first conformally mapping them to
a canonical domain and aligning their 2D representations
over the class of diffeomorphisms. They demonstrated their
algorithm on genus zero closed surfaces.

The mutual information (MI) method [30, 29] measures
the statistical dependence of the voxel intensities between
two images. This measure of agreement can be used to
tune the parameters of a registration transform such that
MI is maximal when the two images are optimally aligned.
The MI method has been successful for rigid [31] and non-
rigid [22, 25] image registration. Here, we generalize it to
match 3D surfaces. For MI to work, a monotonic map-
ping in grayscales between images is not required, so im-
ages from different modalities can be registered [18]. Her-
mosillo et al. [16] adopted linear elasticity theory to reg-
ularize the variational maximization of MI. D’Agostino et
al. [8] extended this approach to a viscous fluid scheme al-
lowing large local deformations, while maintaining smooth,
one-to-one topology [6].

1.2. Basic Idea

Suppose
���

is an oriented surface. The map from
���

to
a local coordinate ��� ��� �
	�� plane is a conformal map when
the first fundamental form satisfies: �� 	���� ��� ��� � 	 ���� 	�� � 	 � . Here � ��� ��� � is called the conformal factor, a func-
tion that scales the metric at each point ��� ��� � . We say��� ��� �
	�� is a conformal coordinate of � � . Locally, each
surface patch is covered by a conformal coordinate chart.
For high genus surfaces, the local conformal parameteriza-
tion can be extended to cover the whole surface. By the
Riemann-Roch theorem and the circle-valued Morse theo-
rem, a high genus surface ( ���! ) can be completely cov-
ered by a set of non-overlapping segments. Each segment
can be conformally mapped to a rectangle. With the Gauss
and Codazzi equations, one can prove that a closed surface" ��� ��� � in #%$ with conformal parameter ��� ��� � is uniquely
determined by its conformal factor � ��� ��� � and its mean cur-



vature &'��� ��� � , up to a rigid motion. We call a tuple of��� ��� � and &(��� ��� � a conformal representation of the sur-
face " ��� ��� � . We can solve the surface registration problem
by computing intrinsic geometric features from the confor-
mal mesh, and aligning them in the parameterization do-
main. To align these scalar fields, we use a fluid registration
technique in the parameter domain that is driven by mutual
information. With conformal mapping, we essentially con-
vert the surface registration problem into an image registra-
tion problem, for which MI methods are especially advan-
tageous. Finally, by invoking the surface partitioning tech-
nique induced by holomorphic 1-forms, our surface-based
mutual information method works on general surfaces with
arbitrary topologies.

2. Theoretical Background

2.1. Global Conformal Parameterization

Suppose ) � , )*	 are two surfaces. Locally they can be
represented as " � ��� � � � 	 � , " 	���� � � � 	 � , where ��� � � � 	 � are
their local coordinates, and " ��� " 	,+-# 	/. #0$ are vector-
valued functions. The first fundamental form of ) � is�� 	 � �214365 � 375 �� 3 8� 5 , where � 375 �:9�;=<9?>?@BA 9?;�<9?>�C ��DE�GF �  �=H .
Similarly, the first fundamental form of )(	 is defined in
the same way: �� 		 � 1 375�I� 365 8� 3 �� 5 . Define a map-
ping JK+L) � . )*	 between two surfaces. Using lo-
cal coordinates, J can be represented as J2+B# 	(. # 	 ,J � �GJ � ��� � � � 	 � � J 	 ��� � � � 	 ��� . Then any tangent vector���� � � �� 	 � on ) � will be mapped to a tangent vector MJ
on )*	 , N'OQP <OQP?RTSVUXWY!Z\[ <ZE] < Z\[ <ZE] RZ\[ RZE] < Z\[ RZE] R4^_

N'O > <O > R/S (1)

The length of MJ is 1X`ba c I� `�c MJ ` MJ c . We use the length
of MJ to define the length of ���� � � 8� 	 � . Namely, we define
a new metric for ) � which is induced by the mapping J
and the metric on )'	 . We call this metric the pull-back
metric, and denote it by Jedf�� 		 . Replacing MJ ` in the above
equation by (1), we get the analytic formula for the pull-
back metric,P�g=O\h RR ULijlk�mQi @6Conp @6C m P m > < a > R�q�q 9

P j9?> @ 9
P k9?> C q O >

j O > k�r (2)

We call J a conformal mapping, if there exists a positive
scalar function � ��� � � � 	 � , such that Jedfs� 		 �t� ��� � � � 	 �us� 	 � .
where � ��� � � � 	 � is called the conformal factor.

Intuitively, all the angles on ) � are preserved on ) 	 .
Figure 1 shows a conformal mapping example. Figure 1
shows a face surface. We introduce a cut on the nose (a) and
change it to a genus one surface. We illustrate the conformal
parameterization via the texture mapping of a checkerboard
in (b). By tracing a horizontal trajectory (c), where the ini-
tial tracing point was manually selected, we conformally

Figure 1. Illustrates surface conformal struc-
ture. (a) shows the cut we introduce on a
face surface. The face becomes an open
boundary genus one surface. (b) shows a
global conformal parameterization of the sur-
face. (c) shows the horizontal trajectory. (d)
shows the rectangle to which the face sur-
face is conformally mapped.

map it to a square as in (d) and get its conformal parameter-
ization.

An atlas is a collection of consistent coordinate charts on
a manifold, where transition functions between overlapping
coordinate charts are smooth.

We treat # 	 as isomorphic to the complex plane, where
the point ��� ��� � is equivalent to v � � � DG� , and ��� ��wx� � is
equivalent to yv � � w�Dz� . Let

�
be a surface in {|$ with an

atlas }��z~|� � v����\� , where �G~�� � v���� is a chart, and v��/+�~|� .�
maps an open set ~ �/� � to the complex plane

�
.

An atlas is called conformal if (1). each chart �z~�� � v����
is a conformal chart. Namely, on each chart, the first funda-
mental form can be formulated as s� 	��K� ��v��
� 	 �v����yv�� ;
(2). the transition maps v?����v�� �� +�v � �G~ ��� ~��
� .v����z~ ��� ~-��� are holomorphic.

A chart is compatible with a given conformal atlas if
adding it to the atlas again yields a conformal atlas. A con-
formal structure (Riemann surface structure) is obtained by
adding all compatible charts to a conformal atlas. A Rie-
mann surface is a surface with a conformal structure.

One coordinate chart in the conformal structure in-
troduces a conformal parameterization between a surface
patch and the image plane. The conformal parameteriza-
tion is angle-preserving and intrinsic to the geometry, and
is independent of the resolution and triangulation.

Locally, a surface patch is covered by a conformal coor-
dinate chart. For high genus surfaces, the local conformal
parameterization can be extended to cover the whole sur-
face except at several points. These exceptional points are
called zero points. By the Riemann-Roch theorem, there areH � w�H zero points on a global conformal structure of a genus� closed surface. By the circle-valued Morse theorem, the
iso-parametric curves through the zero points segment the
whole segment the whole surface to patches, where each



patch is either a topological disk, or a cylinder. The seg-
mentation is determined by the conformal structure of the
surface and the choice of the global conformal parameteri-
zation.

Figure 2 shows an example of the conformal parameter-
ization of a dog surface model. We introduce 3 cuts on the
surface and change it to a genus 2 surface. The computed
conformal structure is shown in (a). (b) shows a partition of
the dog surface, where each segment is labeled by a unique
color. (d) shows the parameterization domain. Each rectan-
gle is the image, in the parameterization domain, of a sur-
face component in (c).

Figure 2. Illustrates conformal parameteriza-
tion for a high genus surface. (a) shows the
conformal structure for a model of a dog. Af-
ter introducing cuts between both ears and
on the bottom, we turn the dog model into an
open boundary genus 2 surface. (b) shows a
partition of this surface, with a unique color
labeling each part. (c) shows the parameter-
ization domain. Each surface component in
(b) is conformally mapped to a rectangle in
(c). The color scheme shows the association
between elements in (b) and (c).

2.2. Optimal Global Conformal Parameterization

Given a Riemann surface
�

with a conformal atlas}��G~ � � v � �E� , a holomorphic 1-form � is defined by a fam-
ily }��G~ � � v � � � � �E� , such that (1). � � � J � ��v � �u�v � , whereJ � is holomorphic on ~ � , and (2). if v � ��� � �e��v��
�
is the coordinate transformation on ~ ��� ~-�e�\���� � , thenJ��l��v��
� OE�=�OE��� � J � ��v � � , i.e., the local representation of the
differential form � satisfies the chain rule.

For a Riemann surface
�

with genus ��� � , all holomor-
phic 1-forms on

�
form a complex � -dimensional vector

space (
H � real dimensions), denoted by ¡ � � � � . The con-

formal structure of a higher genus surface can always be
represented in terms of a holomorphic 1-form basis, which
is a set of

H � functions � 3 +�¢ � . # 	 ��D �  �EH A£A�A �=H � .
Any holomorphic 1-form � is a linear combination of these
functions. The quality of a global conformal parameteriza-

tion for a high genus surface is fundamentally determined
by the choice of the holomorphic 1-form.

Figure 3 shows two different conformal parameteriza-
tions of a lateral ventricle surface of a HIV/AIDS patient
subject. (a) shows a uniform parameterization result and
(b) shows a nonuniform parameterization result. Note that
although both of these are conformal, one has greater area
distortion than the other.

Figure 3. Shows a uniform (left panel) and
a non-uniform (right panel) global conformal
parameterization for the same surface, the
lateral ventricles of the human brain.

2.3. Conformal Representation of a General Sur-
face

For a general surface
�

, we can compute conformal co-
ordinates ��� ��� � to parameterize

�
. Based on these coordi-

nates, one can derive scalar fields including the conformal
factor, � ��� ��� � , and mean curvature, &'��� ��� � , of the surface
position vector

� ��� ��� � :9�¤9?¥�¦ 9�¤9?§ UL¨8m ¥ a § qE©c m ¥ a § q (3)ª m ¥ a § q U¬« �¨ R m ¥ a § q m 9 R9�¥ R® 9 R9?§ R q=©; m ¥ a § q « (4)

We can regard the tuple � � � &,� as the conformal represen-
tation of

� ��� ��� � . We have the following theorem [14].
Theorem: A closed surface

� ��� ��� � in #�$ with confor-
mal parameter ��� ��� � is uniquely determined by its confor-
mal factor � ��� ��� � and its mean curvature &'��� ��� � up to
rigid motions. A simply connected surface " ��� ��� � with a
boundary in #�$ and conformal parameter ��� ��� � is deter-
mined by its conformal factor � ��� ��� � and its mean curva-
ture &'��� ��� � and the boundary position.

Clearly, various fields of scalars or tuples could be used
to represent surfaces in the parameter domain. Because the
conformal structure is intrinsic and independent of the data
resolution and triangulation, we use the conformal repre-
sentation, � ��� ��� � and &(��� ��� � , represent the 3D surfaces.
This representation is stable and computationally efficient.
Figure 4 illustrates computed conformal factor and mean
curvature indexed by color on a hippocampal surface.



Figure 4. Illustrates the computed conformal
factor and mean curvature on a hippocampal
surface. On the left are two views of the hip-
pocampal surface, colored according to the
conformal factor. The right two are colored
by mean curvature.

2.4. Mutual Information for Surface Registration

We now describe the mutual information functional used
to drive the scalar fields � ��� ��� � and &'��� ��� � into correspon-
dence, effectively using the equivalent of a 2D image reg-
istration in the surface parameter space (i.e., in conformal
coordinates). Let ¯ � and ¯ 	 be the target and the deforming
template images respectively, and ¯ ��� ¯£	'+�# 	�. # . Let¡ � # 	 be the common parameter domain of both surfaces
(if both are rectangular domains, the target parameter do-
main can first be matched to the source parameter domain
using a 2D diagonal matrix). Also, let � be a deformation
vector field on ¡ . The MI of the scalar fields (treated as 2D
images) between the two surfaces is defined by° m ¥ q U�±£² R�³f´ m 3 < a 3 R q¶µ¸· p ³£´ m 3 < a 3 R q³ m 3 < q ³£´ m 3 R q O 3 < O 3 R (5)

where ¹�� D�� � �tº ��¯ � ���»� � D�� � , ¹ ¥ � D 	?� �4º ��¯f	���� w ��� � D 	?�
and ¹ ¥ � D�����D 	£� �4º ��¯ � ���»��� � Du� and ¯f	���� w ��� � D 	 .

We adopted the framework of D’Agostino et al. [8] to
maximize MI with viscous fluid regularization. Briefly,
the deforming template image was treated as embedded
in a compressible viscous fluid governed by Navier-Stokes
equation for conservation of momentum [6], simplified to a
linear PDE:¼ � �¾½e¿ 	 � � � �V�'½ ��À¿ ��À¿ A � � �(Á ��� � ��� � � (6)

Here
�

is the deformation velocity, and ½ and � are the
viscosity constants. Following the derivations in [8], we
take the first variation of ¯»����� with respect to � , and use the
Parzen window method [23] to estimate the joint probability
density function (pdf) ¹ ¥ � D�����D 	?� . The driving force Á ��� � ���
that registers features in the 2D surface parameter space is
given byÂ m > a ¥ q U �Ã0Ä Å ´ m 3 < a 3 R q d 9?ÆeÇ9 3 R®È m °zÉ m > q a ° R m > � ¥ q�q�Ê ° R m > � ¥ q (7)

where Ë is the area of the param-
eter domain ¡ � ¼ ¥ � D�����D 	�� �  �

Ì�Í � ³ ´ m 3 < a 3 R q³ m 3 < q ³£´ m 3 R q , Î%Ï�� D�����D 	£� � � Ï
� D�� � � Ï»� D 	?� ��GÐ H�ÑeÒ �E� � A=Ó ��¹�� wxD 	 ��Ô H�Ò 	 � A �zÐ H�ÑlÒ �\� � A�Ó �8¹�� wxD 		 Ô H8Ò 	 �
as the Parzen kernel, and “ Õ ” denotes convolution.

3. The Surface Mutual Information Method
for an Arbitrary Genus Surface

Next, suppose we want to match two high genus surfaces
(i.e., surfaces with the same branching topology). To ap-
ply our surface mutual information method piecewise, we
first compute the conformal representations of the two sur-
faces based on a global conformal parameterization. Mu-
tual information driven flows are then applied to align the
computed conformal representations, while enforcing con-
straints to guarantee continuity of the vector-valued flow at
the patch boundaries. When the chain rule is used, we can
further optimize the mutual information matching results by
optimizing the underlying global conformal parameteriza-
tion.

Let
�e�

and
� 	 be two surfaces we want to match and the

conformal parameterization of
� �

is Ö � , conformal param-
eterization for

� 	 is Ö£	 , Ö � � � � � and Ö�	�� � 	�� are rectangles
in # 	 . Instead of finding the mapping � from

� �
to
� 	

directly, we can use mutual information method to find a
diffeomorphism Ö4+e× � . ×�	 , such that the diagram be-
low commutes: Ö � �	 �ØÖV�xÖ � �Ù� . Then the map � can be
obtained from the following commutative diagram,

a ¤ < ¤ R
Ú R Ú R

ÛÜ
ÝÞ < Ý Þ RÛßÞ (8)

��� Ö � �xÖà��Ö � �	 . Because Ö � , Ö and Ö£	 are all diffeomor-
phisms, � is also a diffeomorphism.

3.1. Mutual Information Contained in Maps be-
tween High Genus Surfaces

A global conformal parameterization for a high genus
surface can be obtained by integrating a holomorphic 1-
form � . Suppose }£� 3 ��D �  �=H�� A£A�A �=H �»� is a holomor-
phic 1-form basis, where an arbitrary holomorphic 1-form
has the formula � � 1 	 p3 U � � 3 � 3 . Assuming the target
surface’s parameterization is fixed, the mutual information
energy between it and the source surface’s parameteriza-
tion is denoted by áL�¶��� , which is a function of the lin-
ear combination of coefficients � 3 . The necessary condi-
tion for the optimal holomorphic 1-form is straightforward,9?â9 ¨ @ � � ��D �  �EH�� A�A£A �EH � . If the Hessian matrix � 9 R â9 ¨ @ 9 ¨ C �
is positive definite, then á will reach the minimum. If the
Hessian matrix is negative definite, á will be maximized.



Our surface mutual information method depends on the
selection of holomorphic 1-form � . To get an optimal sur-
face mutual information matching result, we need find the
optimal holomorphic 1-form for mutual information metric.
Suppose a holomorphic function � �Ù1 	 p3 U � � 3 � 3 , our goal
is to find a set of coefficients � 3 ��D �  ��ã¸ãäãä�=H � that maxi-
mize the mutual information energy, á0å ° . We can solve
this optimization problem numerically as follows:O âçæ�è U/m O â æ�èO ¥ a O â æ�èO § qléëê ´êuì < ê ´êuì R r7r7r ê ´ê�ì RGíê Éêuì < ê Éêuì R r7r7r ê Éê�ì RGí4î WïY

O ¨ <O ¨ Rr7r7rO ¨ Rzí ^Gð_
(9)

where ��� ��� � is the conformal coordinate.
Once we compute

O â æ�èO ¨ @ ��D �  �=H��£ãäã¸ãä�=H � , we can use
steepest descent to optimize the resulting mutual informa-
tion. A complete description of the surface mutual informa-
tion method follows.

Algorithm 1 Surface Mutual Information Method (for sur-
faces of arbitrary genus)

Input (mesh ) �
and ) 	 ,step length ñ�ò , energy differ-

ence threshold ñ�á ),
Output( òó+|) � . ) 	 ) where ò minimizes the surface

mutual information energy.
1. Compute global conformal parameterization of two

surfaces, � 5 �ô1 	 p3 U � � 3 � 3 �GF �  �EH�õ�D �  �=H���ã¸ãäãä�=H � , where� is the surface genus number of two surfaces ) �
and ) 	 ,

and � 5 3 �zF �  �EH���D �  �EH���ã¸ãäã¸�EH � are the coefficients of a
linear combination of holomorphic function basis elements.
The steps include computing the homology basis, cohomol-
ogy basis, harmonic 1-form basis and holomorphic 1-form
basis [15].

2. Compute holomorphic flow segmentation of the target
surface, ) 	 , from the global conformal parameterization,� 	 , which conformally maps the 3D surface to a set of rect-
angles in the Euclidean plane.

3. Compute 2D conformal representation for the target
surface, �
	 ��� ��� � and & 	 ��� ��� � , where ��� ��� � is the confor-
mal coordinate;

4. Compute holomorphic flow segmentation of the source
surface, ) �

, and 2D conformal representation � � ��� ��� �
and & � ��� ��� � ;

5. Apply the mutual information method to op-
timize the correspondence between two surfaces, òö+� � � ��� ��� � � & � ��� ��� ��� . � �
	 ��� ��� � � & 	 ��� ��� ��� �GF �  �EH and& 5 ��� ��� � �GF �  �EH ; and compute mutual information en-
ergy á�÷å ° ;

6. Compute derivative ×óò .
7. Update the global conformal parameterization of

source surface, ) �
, by changing the coefficients � � � � � �×óòf� � �uñ�ò .

8. Compute mutual information energy á , with stepsø ��ù
�=ú
.

9. If á å ° w á�÷å °óû ñ�á , return t. Otherwise, assign á
to á ÷ and repeat steps ü through ý .

Currently, we use the following numerical scheme in
step ü :

1. Compute �á å ° Ô �� and �á å ° Ô  � , �� Ô s� 3 ��D � �EH��£ãäãäã¸�EH � ;
2. Compute  � Ô s� 3 ��D �  �=H���ã¸ãäãä�=H � ;
3. Compute ×óò � �ábå ° Ô s� 3 ��D �  �=H��£ãäã¸ãä�=H � with

Equation 9.

Figure 5. Matching surface features in 2D pa-
rameter domains using Mutual Information.
Geometric features on 3D hippocampal sur-
faces (the conformal factor and mean curva-
ture) were computed and compound scalar
fields (e.g., 8xconformal factor + mean cur-
vature) were mapped to a 2D square by
conformal flattening. In the 2D parameter
domain, data from a healthy normal sub-
ject (the template, leftmost column) was reg-
istered to data from several patients with
Alzheimer’s disease (target images, second
column). Each mapping can be used to ob-
tain a reparameterization of the 3D surface of
the normal subject, by convecting the origi-
nal 3D coordinates along with the flow. The
deformed template images are shown in the
third and fourth (gridded) columns. The grids
show how the fluid transform expands some
highly curved features to match similar fea-
tures. Importantly, there are some consis-
tent 3D geometric features that can be re-
identified in the 2D parameter domain; e.g.,
bright areas (arrows) correspond to high cur-
vature features in the head of the hippocam-
pus.



4. Experimental Results

To make the results easier to illustrate, we chose to en-
code the profile of surface features using a compound scalar
function þ���� ��� � �2ÿ�� ��� ��� � � &'��� ��� � . We linearly nor-
malized its dynamic range to the pixel intensity range 0 to
255. Several examples are shown, mapping one face to the
other face and one hippocampal surface to another. Face
mapping is useful for face recognition. The deformable sur-
face registration of hippocampus is important for tracking
developmental and degenerative changes in the hippocam-
pus, as well as computing average shape models with ap-
propriate boundary correspondences. Figure 5 shows the
matching fields for several pairs of hippocampal surfaces,
establishing correspondences between distinctive features.
The velocity field

�
in Eqn 6 was computed iteratively by

convolution of the force field with a filter kernel derived by
Bro-Nielsen and Gramkow [4]. The viscosity coefficients� and ½ were set to 0.9 and 6.0 respectively. The deforma-
tion field in the parameter domain ( � ) was obtained from

�
by Euler integration over time, and the deformed template
image was regridded when the Jacobian determinant of the
deformation mapping at any point in � w � was smaller than
0.5 [6]. At each step, the joint pdf was updated and the
MI re-computed. Iterations were stopped when MI was no
longer monotonically increasing or when the number of it-
erations reached 350. The Parzen parameter

Ò
was set to 10

for smoothing the joint pdf. In Figure 6, we show face sur-
faces and hippocampal surfaces to be matched, where the
face surface was built with a high resolution, real-time 3D
face acquisition system [32] and hippocampal surfaces were
built from 3D MRI scans of the brain. Specifically, (a), (b)
and (e), (f) show two surfaces to be matched; (c), (d) and
(g) and (h) show 3D vector displacement map, connecting
corresponding points on the two surfaces. (c) and (g) are be-
fore and (d) and (h) after reparameterization of the source
surface using a fluid flow in the parameter domain. These
more complex 3D vector fields store information on geo-
metrical feature correspondences between the surfaces.

5. Conclusions and Future Work

We extended the mutual information method to match
general surfaces. This is useful for face recognition and has
numerous applications in medical imaging. Our examples
of matching various hippocampal surfaces are relevant for
mapping how degenerative diseases affect the brain, as well
as building statistical shape models to detect the anatomical
effects of disease, aging, or development. The face and hip-
pocampus are used as specific examples, but the method is
general and is applicable in principle to other surfaces.

Surface-based mutual information automates the match-
ing of surfaces by computing a correspondence field guided

by the joint distribution of features lying in both surfaces.
This is a natural idea, in that it uses conformal parameteri-
zation to transform a surface matching problem into an im-
age registration problem. Whether or not this approach pro-
vides a more relevant correspondences than those afforded
by other criteria (minimum description length, neural nets,
or hand landmarking) requires careful validation for each
application. Optimal correspondence depends more on util-
ity for a particular application than on anatomical homol-
ogy. Because different correspondence principles produce
different shape models, we plan to compare them in future
for detecting group differences in brain structure, and indi-
vidual differences in face recognition applications. . If sta-
tistical power is increased in group comparisons, this would
support the use of correspondence fields established by mu-
tual information on surfaces.

Figure 6. Surface matching results from our
method. Panels (a), (b), (c) and (d) show the
surfaces being matched. (a) and (b) are two
face surfaces. (e) is a normal subject’s hip-
pocampal surface and (d) is an Alzheimer’s
disease patient’s hippocampal surface. We
flow the surface from (a) to (b) and from (e)
to (f), respectively. Panels (c), (d), (g) and (h)
show the 3D vector displacement map, con-
necting corresponding points on the two sur-
faces, (c) and (g) before and (d) and (h) af-
ter reparameterization of the source surface
using a fluid flow in the parameter domain.
After reparameterization, a leftward shift in
the vertical isocurves adds a larger tangen-
tial component to the vector field. Even so,
the deformed grid structure remains close to
conformal. These more complex 3D vector
fields store information on geometrical fea-
ture correspondences between the surfaces.
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