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Figure 1: Uniform global conformal parameterization ((a) and (b)) and region emphasized conformal parameterization ((c) and (d)). (a). Least
uniform conformal parameterization with energy: 21.208e − 5. (b). Most uniform conformal parameterization with energy: 3.685e − 5. (c).
Maximizing the parameter area of the left half surface (with percentage: 83.48%). (d). Maximizing the parameter area of the right half surface
(with percentage: 82.58%.)

ABSTRACT

All orientable metric surfaces are Riemann surfaces and admit
global conformal parameterizations. Riemann surface structure is a
fundamental structure and governs many natural physical phenom-
ena, such as heat diffusion and electro-magnetic fields on the sur-
face. A good parameterization is crucial for simulation and visual-
ization. This paper provides an explicit method for finding optimal
global conformal parameterizations of arbitrary surfaces. It relies
on certain holomorphic differential forms and conformal mappings
from differential geometry and Riemann surface theories. Algo-
rithms are developed to modify topology, locate zero points, and
determine cohomology types of differential forms. The implemen-
tation is based on a finite dimensional optimization method. The
optimal parameterization is intrinsic to the geometry, preserves an-
gular structure, and can play an important role in various applica-
tions including texture mapping, remeshing, morphing and simu-
lation. The method is demonstrated by visualizing the Riemann
surface structure of real surfaces represented as triangle meshes.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Curve, surface, solid, and object representations—Surface
Parameterization

Keywords: Computational geometry and object modeling; Curve,
surface, solid, and object representations; Surface parameterization.

1 INTRODUCTION
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Surface parameterization is the process of mapping a surface to a
planar domain and has many applications in various fields of sci-
ence and engineering, including texture mapping, geometric mor-
phing, surface matching, surface remeshing, and surface extrapo-
lation. For example, texture mapping can be used to enhance the
visual quality and generate different visual results. Geometric mor-
phing can be used to generate vivid animation results. Essentially,
surface parametrization can convert a 3D geometric problem to 2D,
thereby improving the efficiency and simplifying the computation.

Conformal surface parameterizations have many merits: they
preserve angular structure, are intrinsic to geometry, and are stable
with respect to different triangulations and small deformations. It
has been widely used for many applications, such as non-distorted
texture mapping [23], [16],[20], surface remeshing [1], surface fair-
ing [22], surface matching [14], brain mapping [2], [13] etc.

It is desirable to parameterize surfaces globally without any
seams. The existence of global conformal parameterization is a
non-trivial fact. This is equivalent to the fact that all orientable sur-
faces are Riemann surfaces. The atlas formed by the global confor-
mal parameterization is the so-called conformal structure. Confor-
mal structure is a fundamental structure between metric structure
and topological structure and governs many natural physical phe-
nomena. The abstract concept of a Riemann surface can also be
visualized by texture mapping special patterns using global confor-
mal parameterizations. This is the only means of visually conveying
conformal information of surfaces.

The early work of global conformal parameterization has been
done in [14, 15], where the basis for all possible global conformal
parameterizations are computed. Because global conformal param-
eterization is non-unique, the problem of finding the optimal one
remains open.

This paper introduces an explicit method to find the optimal
global conformal parameterizations of arbitrary surfaces. First, the
metrics for measuring the quality of conformal parameterizations
are designed. Second, the major factors affecting the quality of the
parameterization are summarized. Then, algorithms are developed
to modify the topology, locate the zero points, and determine the
cohomology types of the differential forms. The method is based
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on finite dimensional optimization and demonstrated by visualizing
the Riemann surface structure of real surfaces.

1.1 Contributions

This paper introduces algorithms to optimize global conformal pa-
rameterizations. The method is based on Riemann surface theories
and differential geometry. Therefore, it is rigorous and general. The
optimization algorithms can be generalized to all parameterization
methods based on convex combinations [10]. Our main contribu-
tions are listed as follows.

1 We introduce energy functionals on the space of complex-
valued holomorphic mappings.

2 In [10], the author raised the following open question: ”Un-
der what boundary condition is a harmonic map between two topo-
logical disks conformal?” We answer this question in an algorith-
mic way. We compute the double covering of a topological disk
(double covering means gluing two copies of the same surface
along their boundaries to form a closed symmetric surface; details
are described in [15]), and conformally map the double covering to
a sphere preserving the symmetry. Thus the disk itself is mapped to
a hemisphere. Then a conformal map between two disks is induced
by their mappings to the same hemisphere. The boundary condition
which makes a harmonic map conformal can be computed using
this algorithm directly.

3 The difference between the zero points of a conformal pa-
rameterization and singularities of general vector fields is that the
zero points cannot be arbitrarily assigned and are determined by
the conformal structure. To the best of our knowledge, this state-
ment has never been addressed in computer graphics, although it is
the major topological obstruction for any surface parameterization
method.

4 We propose a way of finding the optimal Möbius transform
that best balances area deformations (note that conformality is in-
variant through Möbius transforms.)

5 This paper explains the following fact: the area stretching
factor increases exponentially at the tip of long tubes and it is true
for all other parameterization methods. This shows the limits of cur-
rent parameterization techniques and justifies topological modifica-
tion techniques proposed in this paper. Although some researchers
reached the same conclusion by heuristic methods, a rigorous proof
is given in this paper.

1.2 Related Work

Surface conformal parameterization algorithms have been thor-
oughly studied in the literature. We summarize them according to
the topologies of surfaces that they can handle.

Conformal map for topological disks Many researchers
propose methods to build a conformal map for topological disks.
Pinkall and Polthier derive the discrete Dirichlet energy in [25].
Eck et al. [8] introduce the discrete harmonic map, which approx-
imates the continuous harmonic maps by minimizing a metric dis-
persion criterion. Duchamp formulates the hierarchical harmonic
embedding in [7]. Floater introduces a shape-preserving method
in [9], which is very similar to harmonic maps for planar surfaces.
Sheffer and de Sturler introduce angle based flattening to compute
conformal maps. Desbrun et al. [1, 6] compute the discrete Dirich-
let energy and apply conformal parameterization to interactive ge-
ometry remeshing. Levy et al.[23] compute a quasi-conformal
parameterization by approximating the Cauchy-Riemann equation
using the least square method. The above two formulations are

equivalent. Hormann and Greiner propose the MIPS parameteri-
zation [18], which roughly attempts to preserve the ratio of singu-
lar values over the parameterization. Degener et al. [5] extend the
method in [18] and provide a control parameter that allows for me-
diation between angle and area distortion.

Conformal map for genus zero closed surfaces Haker et
al. [16] introduce a method to compute a global conformal mapping
from a genus zero surface to a sphere by representing the Laplace-
Beltrami operator as a linear system. Gu et al.[14] introduce a non-
linear optimization method to compute global conformal parame-
terizations for genus zero surfaces. The optimization is carried out
in the tangential spaces of a sphere.

Conformal map for high genus surfaces Few researchers
report their work on surfaces with complicated topology. Gu and
Yau introduce algorithms to compute conformal structures deter-
mined by the metric for general closed surfaces in [14]. The pro-
posed method approximates De Rham cohomology by simplicial
cohomology and computes a basis of holomorphic 1-forms. Later
the method is generalized for surfaces with boundaries in [15].

In [27, 24, 28], the Riemann surface structure is defined for com-
binatorial meshes. Because the metric information is ignored in
their work, their methods cannot be applied to our problems di-
rectly.

2 SKETCH OF MATHEMATICAL THEORIES AND ALGO-
RITHM OVERVIEW

This section introduces the basic concepts in Riemann surface the-
ory related to global conformal parameterization and an overview
of the optimization algorithms.

2.1 Theoretic Background

The basic concepts of Riemann surface theories are briefly
sketched. Further details can be found in [19], [12] and [26].

Conformal Chart Let U be an open set of S ∈ R3. A pa-
rameterization of U is a one to one map z : U → R2, which maps
U to the (u,v) plane. (U,z) is called a chart of S. In the case

of conformal chart, the first fundamental form satisfies: ds2 =
λ (u,v)2(du2 + dv2), where λ (u,v) is called the stretch factor, a
function that scales the metric at each point (u,v). The coordinate
pair (u,v) is called a conformal parameter of the surface patch U .
(U,z) is called a conformal chart of S.

Conformal Atlas All oriented metric surfaces are Riemann
surfaces and have a global conformal atlas, or a set of conformal
charts. In the following discussion, we treat R2 as a complex plane,
where the point (u,v) is equivalent to z = u + iv, and (u,−v) is
equivalent to z̄ = u− iv. In later sections, we use both representa-
tions interchangeably.

Let S be a surface in R
3 with an atlas {(Uα ,zα )}, where (Uα ,zα )

is a chart, and zα : Uα →C maps an open set Uα ⊂ S to the complex
plane C.

The atlas is called conformal if (1). each chart (Uα ,zα ) is a
conformal chart. Namely, on each chart, the first fundamental form
can be formulated as ds2 = λ (zα )2dzα d ¯zα , (2). the transition maps

zβ ◦ z−1
α : zα (Uα ∩Uβ ) → zβ (Uα ∩Uβ ) are holomorphic.

A chart is compatible with a given conformal atlas if adding it
to the atlas again yields a conformal atlas. A conformal structure
( Riemann surface structure ) is obtained by adding all compatible
charts to a conformal atlas. A Riemann surface is a surface with a
conformal structure.
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Holomorphic 1-form Given a Riemann surface S with a con-
formal atlas {(Uα ,zα)}, a holomorphic 1-form ω is defined by a
family {(Uα ,zα ,ωα )}, such that (1) ωα = fα(zα )dzα , where fα

is holomorphic on Uα , and (2) if zα = φαβ (zβ ) is the coordinate

transformation on Uα ∩Uβ (6= /0), then fα (zα) dzα
dzβ

= fβ (zβ ), the lo-

cal representation of the differential form ω satisfies the chain rule.
For a Riemann surface S with genus g > 0, all holomorphic 1-

forms on S form a complex g-dimensional vector space (2g real
dimension), denoted as Ω1(S). The quality of a global conformal
parameterization for a high genus surface is mainly determined by
the choice of the holomorphic 1-form.

The zero points of a holomorphic 1-form ω are the points where,
on any local representation (Uα ,zα ,ωα ), ωα equals zero. For a
genus g > 0 surface, there are in general 2g−2 zero points for each
holomorphic 1-form.

Möbius Transformation Group For genus zero closed sur-
faces, there is no holomorphic one form. The global conformal
parameterization is a conformal map φ : S → S2 from the surface S
to the unit sphere S2. Two such kinds of transformations differ by a
Möbius transformation on S2. Suppose both φ1 and φ2 are two con-

formal parameterizations of S, consequently φ2 ◦φ−1
1 = µ , where µ

is a Möbius automorphism of the sphere. All conformal maps from
S to S2 can then be formulated as µ ◦φ1. We compute one confor-
mal map φ1 first, then compose it with a Möbius transformation µ .
By choosing an appropriate µ , we can optimize the energy.

A genus zero open surface can be globally conformally parame-
terized by the unit disk. Two such kinds of parameterizations differ
by a Möbius transformation defined on the disk. We can find the
best one with a similar method to that used for a genus zero closed
surface.

2.2 Optimization Algorithms Overview

In order to measure the quality of a global conformal parameteri-
zation, we define different metrics for different applications. There
are several main factors affecting the quality of a parameterization,
including the topology of the surface, the zero point position and
the choice of the holomorphic 1-form for a high genus surface or
the Möbius transformation for a genus zero surface. The algorithms
for optimizing these factors are as follows.

• Metric for parameterization. We formulate different function-
als to measure the qualities of parameterizations, including unifor-
mity energy, parameter area of emphasized regions and zero points
locations.

• Topology Optimization. The long tube shape causes an expo-
nential shrinking parameterization. We design a method to mediate
this problem.

• Zero Point Allocation. The parameterization near the zero
points is singular; it is desirable to allocate zero points at the prede-
fined positions.

• Optimal Holomorphic 1-form. The global conformal parame-
terization for a higher genus surface is induced by a holomorphic
1-form. The special holomorphic 1-form is chosen to optimize the
functional for parameterizations.

• Optimal Möbius Transform. The global conformal parameteri-
zation of a genus zero surface is determined by a Möbius transform.
The algorithm is designed to find an optimal Möbius transform to
maximize the functional.

2.3 Approximation Strategy

The concepts of Riemann surfaces are defined for smooth surfaces.
In practice, it is impossible to represent the smooth surface and con-
formal structure using finite memory. We approximate them by the
finite element method. Specifically, we approximate a smooth sur-
face S by a series of piecewise linear triangular meshes {S̃n} such

that each S̃n doesn’t have many obtuse angles and approximate the
smooth conformal structures of S using piecewise linear mappings
defined on {S̃n}. Such discrete mappings are called discrete holo-
morphic 1-forms. The existence of {S̃n} has been shown in [15].

A natural question arises of whether the approximation con-
verges to the real conformal structure of the smooth surface. The
answer is positive. Computing conformal structure is equivalent to
solving an elliptic Partial Differential Equation (PDE) on the sur-
face. It has been proven in finite element field that the discrete ap-
proximation converges to the real solution [3]. Also, the solutions
to elliptic PDEs are stable and smooth in general. This implies the
convergence and stability of our approximation.

Because of the convergence and the stability of our discrete ap-
proximations, they behave like the real solutions asymptotically. In
the following discussion, we conceptually treat them as smooth so-
lutions and do not differentiate discrete approximation and smooth
solution.

There is another important point we want to clarify. The confor-
mal structure is determined by the metric of the surface. Even if a
surface is not smooth, such as the mesh S̃n in the approximation,
it still has a smooth metric and a smooth conformal structure. The
discrete holomorphic 1-forms in the approximations are not the real
conformal structure of the mesh S̃n.

3 ALGORITHMS FOR GLOBAL CONFORMAL PARAMETERI-
ZATION OPTIMIZATION

In our current work, the surfaces are represented as meshes. Sup-
pose K is a simplicial complex, and a mapping r : |K| → R3 em-

beds |K| in R3. M = (K,r) is called a triangular mesh. Kn, where
n = 0,1,2, are the sets of n-simplices. We use [v0,v1, · · · ,vn] to
denote a n-simplex, where vi ∈ K0.

We use these symbols in the following discussion: E - energy for
a parameterization, ω - a holomorphic 1-form, λi - the coefficients
of ω , λ - conformal factor, τ - the stereo-graphic projection, µ - a
Möbius transformation, φ - a conformal map between surfaces.

3.1 Computing Conformal Structures

We use the methods introduced in [14], [15] to compute conformal
structures.

Genus 0 closed surfaces can be conformally parameterized over
a unit sphere, and harmonic maps of these surfaces are equivalent
to conformal maps. We use a Gauss map as the initial map, and
then we use the heat flow method to reduce the harmonic energy
with special constraints. The final harmonic map is a global con-
formal parameterization. By composing it with a Möbius map of
the sphere, we can obtain all possible global conformal parameter-
izations.

For genus 0 open surfaces, we use double covering to get a closed
symmetric surface. We can map this double covered surface con-
formally to a sphere and preserve the symmetry; i.e, each copy of
the original surface is mapped to a hemisphere. Then we use stereo-
graphic projection to map a hemisphere to a unit disk; the surface
is globally conformally parameterized by the disk. By composing
with a Möbius map of the disk, we can construct all global confor-
mal parameterizations for the surface.

The conformal structure of a higher genus surface can be repre-
sented as a holomorphic one-form basis, which is a set of 2g func-
tions ωi : K1 → R2, i = 1,2 · · · ,2g. Any holomorphic one-form ω
is a linear combination of these functions. The surface can be cut
open to a topological disk, namely a fundamental domain. Verdiére
et al. [4] and Lazarus et al. [21] discussed the algorithms for com-
puting fundamental domains for general surfaces. By integrating ω
on a fundamental domain, the whole surface can be globally con-
formally mapped to the uv plane.
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The computation process for {ωi, i = 1,2, · · · ,2g} can be sum-
marized as computing the homology basis, cohomology basis, har-
monic one-form basis and holomorphic one-form basis.

Double covering techniques are applied to surfaces with bound-
aries to convert them to closed symmetric surfaces. Therefore, in
the following discussion, we assume the surfaces are closed.

3.2 Metrics for parameterization

In order to convert the whole mesh to a geometry image or spline
surface patches, parameterizations with high uniformity are pre-
ferred. It is often desirable to allocate more parameter areas for
special regions on the surface in real applications. For example, in
surface remeshing, more samples are required for regions with high
Gaussian curvature or sharp features. Sometimes, multi-chart ge-
ometry images are used to represent the shape. In this case, we can
use several global parameterizations, each of which will emphasize
a surface region and convert it to one chart in the geometry image.
Also in this scenario, the parameterization emphasizing different
regions are also desirable. For high genus surfaces, the existence
of zero points is unavoidable, and the neighborhoods of zero points
will be under sampled in the parameter domain. Therefore, users
would like to assign the zero points to positions that have lower
curvature or are less visible. In order to allocate zero points at the
prescribed positions, we design a special metric to measure the pa-
rameter area of the neighborhoods of the given points. If the pa-
rameterization of zero points places them at the desired positions,
this metric will be close to zero.

Suppose Ω ⊂ R2 is the parameter domain for a surface S and
(u,v) are parameters on Ω. Then the functional for measuring uni-
formity is

E =
∫

Ω
(λ (u,v)2 −1)2dudv, (1)

where λ is the conformal factor, subject to

∫
Ω

dudv =
∫

Ω
λ (u,v)2dudv. (2)

Similarly, suppose Ω is divided into two regions Ω1 and Ω2, and
we would like to emphasize Ω1. Then the functional is

E =
∫

Ω1

λ (u,v)2dudv, (3)

subject to ∫
Ω1∪Ω2

λ (u,v)2dudv =

∫
Ω

dudv. (4)

For high genus surfaces, if we want to assign zero points for a
global conformal parameterization, different functionals should be
formulated to minimize the conformal factor at the desired points.
Suppose we want to assign {p1, p2, · · · , pn} ⊂ S as zero points,
where Ui ⊂ Ω is a neighborhood of pi, and ω is a holomorphic
1-form. We define the functional as

E(ω) =
n

∑
i=1

∫
Ui

ω ∧ ω̄, (5)

∧ represents the wedge product between holomorphic 1-forms. In-
tuitively, this functional measures the area of the neighborhoods of
zero points on the parameter domain. If there is a holomorphic 1-
form ω with zero points at all pi’s, then its E(ω) should be close to
zero.

3.3 Optimal Holomorphic 1-form for High Genus Surface

A global conformal parameterization for a high genus surface can
be obtained by integrating a holomorphic one form ω . Suppose
{ωi, i = 1,2, · · · ,2g} is a holomorphic 1-form basis, where an ar-

bitrary holomorphic 1-form has the formula ω = ∑
2g
i=1 λiωi. The

energy for the parameterization is denoted E(ω), which is a func-
tion of the linear combination of coefficients λi. The necessary
condition for the optimal holomorphic 1-form is straightforward,
∂E
∂λi

= 0, i = 1,2, · · · ,2g. If the Hessian matrix ( ∂ 2E
∂λi∂λ j

) is positive

definite, then E will reach the minimum. If the Hessian matrix is
negative definite, E will be maximized. The traditional Newton’s
method can be applied for the optimization with the constraint that
the total area in the parameter domain is fixed.

3.3.1 Uniform Global Conformal Parameterization

Given any holomorphic one-form ω , ω = ∑
2g
k=1 λkωk , we require

the total parameter area to be equal to the total area of the surface
in R3,

∑
[v0,v1,v2]∈K2

1

2
|ω([v0,v1])×ω([v1,v2])| = ∑

[v0,v1,v2]∈K2

S[v0,v1,v2], (6)

where S[v0 ,v1,v2] is the area of face [v0,v1,v2] in R3. The uniformity

functional is defined as the sum of the squared area differences of
faces,

E(ω) = ∑
[v0,v1,v2]∈K2

(
1

2
|ω([v0,v1])×ω([v1,v2])|−S[v0 ,v1,v2])

2. (7)

Both the constraint and the energy functional are polynomials with
respect to λi’s. For example, the constraint can be reformulated as a

quadratic form; if ci, j = ∑[v0,v1,v2]∈K2

1
2 |ωi([v0,v1])×ω j([v1,v2])|,

then the constraint is ∑
2g
i, j=1 ci jλiλ j = const.

We use Newton’s method to optimize the energy with con-
straints. Because the energy is of degree 4, the extremal points are
not unique. We randomly choose initial values for λi’s, and choose
the global optimal solution from local optimal ones. By minimiz-
ing the energy, we get the most uniform parameterization, for the
purpose of comparison, we get the least uniform parameterization
by maximizing the energy.

Figures 1 and 2 demonstrate the computation results. In figure 1,
three cuts are introduced on the genus 0 bunny surface, two are on
its ear tips, one is on the bottom, then the surface is double covered
to become a genus 2 surface. In figure 2, the cuts are introduced
at horse’ feet and mouth, the double covered surface is of genus 4.
The least uniform and the most uniform global parameterization are
illustrated by using a checkerboard-texture map. Figure 5 uses the
grid pattern to illustrate the computation results.

3.3.2 Emphasized Global Conformal Parameterization

Suppose we subdivide the whole surface into two regions D0 and
D1. D0 and D1 themselves may be disconnected, with complicated
topologies, and we want to maximize the parameter areas for D0.
Then, we define the area energy 3 as

E(ω) =
1

2
∑

[v0,v1,v2]∈D0

|ω([v0,v1])×ω([v1,v2])| (8)

with the same constraint in equation 6.
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a. Least Uniform b. Most Uniform

Figure 2: Uniform Global Conformal Parameterization. Least uniform
conformal parameterization, energy: 16.983e-5 (a). Most uniform
conformal parameterization, energy: 7.878e-5(b).

The functional can be represented as a quadratic form directly.
Let ci, j = ∑[v0,v1,v2]∈D0

|ωi([v0,v2])×ω j([v1,v2])|, then the empha-

sized area energy is

E(λ1,λ2, · · · ,λ2g) =
2g

∑
i, j=1

ci jλiλ j. (9)

By maximizing this functional, we get more samples on D0 and
less samples on D1, and vice versa. The critical point is unique in
general cases. We use Newton’s method for the optimization with
arbitrary initial values for the λi’s.

Figure 1 demonstrates the optimization of the emphasized area
energy for the bunny surface model. The surface is equally subdi-
vided into the left part and the right part. Figure 1 (c) emphasizes
the left part, and the parameter area of the left part is 83.48% of
the total parameter area. Figure 1 (d) emphasizes the right part, the
parameter area is 82.58% of the total parameter area.

3.4 Optimal Möbius Transform for Genus Zero Surface

For genus zero surfaces, there are no holomorphic one forms. We
conformally map the surface to a unit sphere or a unit disk. Because
the parameter domains are fixed, the constraint 6 is unnecessary.

We can still use the uniformity energy or the emphasized area en-
ergy, but the admissible transformations are changed to the Möbius
transformations.

Topological sphere The Möbius transformation on the com-

plex plane has the formula µ(z) = az+b
cz+d

,ad −bc = 1,a,b,c,d ∈ C.
A sphere can be conformally mapped to the complex plane by a
stereographic projection τ : S2 → C, τ(x,y,z) = x

1−z
+
√
−1

y
1−z

.

A conformal automorphism φ of the sphere can be formulated
as φ = τ−1 ◦ µ ◦ τ , We first compute a conformal map φ0 : S → S2

from the surface to the sphere, all admissible conformal mappings
can be represented as φµ = τ−1 ◦µ ◦ τ ◦φ0.

The uniformity functional becomes

E(µ) = ∑
[v0,v1,v2]∈K2

(|φµ (v0),φµ (v1),φµ (v2)|−S[v0 ,v1,v2])
2,

where |p0, p1, p2| represents the area of the triangle formed by
p0, p1, p2. This is a rational formula with respect to the coeffi-
cients of µ . We use Newton’s method to optimize it without any
constraints.

Similarly, the emphasized area energy is formulated by

E(µ) = ∑
[v0,v1,v2]∈D0

|φµ (v0),φµ (v1),φµ (v2)|. (10)

We use Newton’s method to maximize the energy. Because the
optimal solutions are not unique, we randomly choose the initial
Möbius transformation µ0, and use φµ0

as the initial parameteriza-
tion.

Topological disk For the topological disk case, we use double
covering to make it a symmetric topological sphere. However, we
restrict the admissible transformations to be in a subgroup of the

Möbius group, which preserves the symmetry; namely µ(z̄) = µ(z).
The formula for such a Möbius transformation can be written as

µ(z) = (az+b)/(b̄z+ ā),aā−bb̄ = 1,a,b ∈ C.
Other steps are similar to those for the case of a topological

sphere. Figure 3 illustrates a Möbius transformation from the disk
to itself.

Figure 3: Möbius transformation from the unit disk to itself.

3.5 Topological Optimization

In this section, we introduce an automatic method to modify the
topology of the surface to improve the uniformity of the parameter-
ization.

For long tube shapes, such as fingers and tails, the area distor-
tion is usually very big. We want to show that the problem can-
not be solved by linear combination of the holomorphic one-form
bases. We have to modify the conformal structure of the surface
itself; namely, we either change the Riemannian metric or modify
the topology.

First, we will demonstrate the fact that the conformal factor will
increase exponentially on long tube shapes. Suppose we have a long
thin cylinder and we conformally parameterize it. The center of the
top is mapped to the origin. If we use polar coordinates (ρ,θ ), then
the conformal factor is a function dependent only on ρ because of
symmetry. The Gaussian curvature K of the cylinder is zero, and

K(ρ,θ ) =
1

λ 2
∆ logλ = 0. (11)

We can deduce λ (ρ) = exp (aρ +b), where a,b are constants. No
matter what kind of conformal parameterization we choose, the
stretching is exponential. We have to change the topology of the
surface by introducing a small boundary at the top of the cylinder,
and then the conformal factor becomes constant.

Based on this observation, we design our greedy topological
modification algorithm as follows. First we find the most uniform
conformal parameterization for current surface. Second, we locate
points with extremely high conformal factors. Third, we introduce
a small slice at the neighborhoods of those points. Finally, its con-
formal structure is recomputed. We repeat the whole process until
the uniformity energy is less than some threshold.

Estimating the Conformal Factor Suppose we have ob-
tained a global conformal parameterization induced by a holomor-
phic one-form ω . The conformal factor for each vertex can be esti-
mated by the following formula:

λ (v) =
1

n
∑

[vi,v]∈K1

|r(vi)− r(v)|
|ω([vi,v])|

,vi,v ∈ K0, (12)
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(a) (b)

Figure 4: Locating Extreme Point. Conformal factor is color encoded
into bunny model (a). Conformal factor is color encoded into horse
model (b). The extreme points of (a) are at the ear tips. The
extreme points of (b) are at the feet.

where n is the valence of vertex v. In practice, since ω vanishes at

degenerated points, we compute 1
λ

instead of λ .

Locating the Extreme Points We locate the cluster of ver-
tices with relatively high conformal factors, compute their center of
gravity, and find the closest vertex to it. This vertex is an extreme
point. Then we introduce a small slice through each extreme point,
double cover the surface as described in [15], and compute a holo-
morphic 1-form basis. The optimal parameterization of the current
topology is computed by minimizing the uniformity energy. We re-
peat the whole procedure until the energy is smaller than a specified
threshold or converges to a limit.

Now we need to address the question of whether the uniformity
would really be improved by this procedure. Suppose at step n,
we get a surface Sn. Then any global conformal parameterization
for Sn is also a global conformal parameterization for Sn+1, and
the minimal uniformity energy of Sn+1 denoted En+1 is no greater
than that of Sn. The sequence {E0,E1,En+1, · · ·} is non-increasing
and will converge to a limit. In practice, if the optimal uniformity
energy does not decrease too much, the procedure will terminate.

The results for topological optimization are illustrated in Figure
4. In Figure 4(a), the bunny is conformally mapped to a sphere.
The conformal factors are color encoded where the red color means
high conformal factor. The tips of ears are located accurately. A
horse model is also processed. The feet, the mouth and the tip of
ears are regions with high conformal factor. Then we introduce
small boundaries to them and compute conformal structure for the
modified surfaces.

Suppose a genus zero closed surface has k boundaries after topo-
logical optimization, and its double covering is of genus k−1. The
parameterization can be further optimized by the method for high
genus surfaces. Although we introduce more zero points, the qual-
ity of the parameterization is improved greatly. The boundary of
small slices will be mapped to an iso-parametric line in the param-
eter domain; no singularities are introduced along the slices. In
theory, the slices can be as small as possible to avoid affecting the
rendering.

3.6 Zero Points Allocation

For a genus g > 1 surface, there are 2g− 2 zero points in a global
conformal parameterization. In the neighborhood of zero points,
the parameter areas of their neighborhoods are very small. If we
want to construct geometry images from the surface, then these re-
gions will be under-sampled. Then it is desirable to allocate zero
points at some predetermined positions.

The positions of the zero points are globally related. They are
determined by the conformal structure of the surface and are invari-
ant under conformal mapping between surfaces. It is impossible to

(a). Least Uniform, (b). Most Uniform,
energy: 4.231e-5 energy: 1.605e-5

Figure 5: Max Planck Head Model. Least and most uniform confor-
mal parameterization.

assign 2g−2 arbitrary points on the surface as the zero points.
Suppose ω is a holomorphic 1-form with p1, p2, · · · , p2g−2 as

zero points; then ω(pi) = 0,∀i. Let ω = ∑
2g
j=1 λ jω j; then we get

the linear system

2g

∑
j=1

λ jω j(pi) = 0, j = 1,2, · · · ,2g−2. (13)

If {p1, p2, · · · , p2g−2} is a set of zero points for some holomor-
phic one-form ω 6= 0, it is necessary and sufficient that the matrix
(ω j(pi)) is degenerated.

In our discrete setting, ω = ∑
2g
i=1 λiωi, and we use the following

to approximate |ω(v)|,v ∈ K0.

ω(v) =
1

n
∑

[vi,v]∈K1

|ω([vi,v])|
|r(vi)− r(v)| =

1

n
∑

[vi,v]∈K1

|∑2g
j=1 λ jω j([vi,v])|
|r(vi)− r(v)| .

Suppose we want to set n zero points {v1,v2, · · · ,vn}, where n <
2g−2. Then we need to minimize the following energy

E(ω) =
n

∑
i=1

|ω(vi)|2. (14)

This functional is a quadratic form of λ1,λ2, · · · ,λ2g and can
be solved easily using the conjugate gradient method. If n is not
greater than g, then we can fix the zero points at the predetermined
positions.

Figure 6 illustrates the two hole torus model. We predetermine
the position of one zero point. By minimizing the energy in Equa-
tion 14, we can get the desired holomorphic one forms.

4 RESULTS

The algorithms are developed using C++ on Windows XP platform,
and tested with a dual processor PC with main frequency 2.8GHz.
The statistics are illustrated in Table 1, where all meshes are after
topological optimization. We also tested the algorithm stability by
optimizing parameters for bunny meshes with different resolutions.
The simplified meshes are generated using the progressive mesh
method in [17]. The optimal parameterizations are consistent. The
optimization uses Newton’s method and stops when the energy dif-
ference between 2 consecutive iterations is less than a threshold.

We test our algorithms on several surface models acquired by
laser scanning. The bunny model is of genus zero. The surface
is sliced with 3 boundaries after topological optimization. The
least uniform global conformal parameterization and most uniform
global conformal parameterization results are illustrated in Figure 1
(a) and (b), respectively. Similarly, the horse model is of genus

272



Mesh Vertices Genus Boundaries Time (s)

eight 766 2 0 30

bunny 23996 0 3 150

horse 19994 0 7 250

Max-Planck 23609 0 1 180

Body 40000 0 5 350

David 200000 0 5 1800

Table 1: Performance for global conformal parameterization opti-
mization.

zero and it has 5 boundaries after topological modification. The
least uniform global conformal parameterization and the most uni-
form global conformal parameterization are illustrated in Figure 2
(a) and (b), respectively.

The Max Planck head surface in Figure 5 is a topological disk.
Figure 5(a) illustrates the result with minimum uniformity energy
and Figure 5 (b) illustrates the result with maximum uniformity en-
ergy.

The human body surface in Figure 7 has 5 boundaries. The dou-
ble covering of this surface is of genus 4. We partition the whole
surface to the left and right regions equally. The parameterization in
Figure 7 (a) emphasizes the right region, which occupies 98.11% of
the total parameter area. The parameterization in Figure 7 (b) em-
phasizes the left region, which occupies 96.1% of the total parame-
ter area. The least uniform and the most uniform parameterization
results are shown in Figure 7 (c) and (d) respectively.

Figure 6 illustrates the positions of zero points. We can get the
desired holomorphic one-forms by minimizing Equation 14. The
Michelangelo’s David surface is illustrated in Figure 8. We control
the zero points position using the method described in Section 3.6.
In Figure 8(a), a zero point is located at the left upper arm near
the shoulder. The same global conformal parameterization also has
a zero point at his right upper arm near the shoulder as shown in
(c). In Figure 8(b), there is a zero point under the left armpit. The
same global conformal parameterization also gives a zero point at
the right armpit, as shown in Figure 8(d).

5 CONCLUSION AND FUTURE WORK

This work introduces systematic algorithms to optimize global con-
formal surface parameterizations. We define uniformity energy to
measure the uniformity of the parameterization. We define empha-
sized area energy to measure the parameter area of regions of in-
terest. We also define special functional to allocate zero points at
the desired points. The problem of optimizing global conformal
parameterizations is equivalent to searching for a desired Möbius
transformation for genus zero surfaces and a desired holomorphic
1-form for high genus surfaces. We model global parameter op-
timizations as finite dimensional optimization problems, and use
Newton’s method to solve them. We also introduce algorithms to
automatically modify the topology and allocate zero points at the
specified positions to improve the quality of the global parameteri-
zation. The algorithms developed are efficient, intrinsic, practical,
and versatile for different applications.

In the future, we will generalize the global conformal parame-
terizations to other parameterizations, such as Tuette, Stereo, Alexa
parameterizations as in [11], and intrinsic parameterizations as in
[6]. The generalization will be based on geometric differential
equation theories.
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Figure 6: Two hole torus Model. Locate zero points at different positions

a. Emphasizing Left Part b. Emphasizing Right Part c. Least Uniform d. Most Uniform

Figure 7: Human body Model. (a) Maximizing the parameter areas of left, percentage: 98.11%. (b) Maximizing the parameter areas of right,
percentage: 96.01%. (c)Least uniform conformal parameterization, energy: 2.798e-5(c). (d) Most uniform conformal parameterization, energy:
1.501e-5 (d).

a. Zero Point at Left Shoulder b. Zero Point at Left armpit c. Zero Point at Right shoulder d. Zero Point at Right armpit

Figure 8: Zero Point Allocation. Zero point is originally at left shoulder(a). Put zero point at Left armpit(b). Zero point is originally at right
shoulder(c). Put zero point at right armpit(d).
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