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ABSTRACT

We developed a general method for global conformal parameterizations based on the structure of the cohomology
group of holomorphic one-forms with or without boundaries.1, 2 For genus zero surfaces, our algorithm can find
a unique mapping between any two genus zero manifolds by minimizing the harmonic energy of the map. In this
paper, we apply the algorithm to the cortical surface matching problem. We use a mesh structure to represent
the brain surface. Further constraints are added to ensure that the conformal map is unique. Empirical tests
on MRI data show that the mappings preserve angular relationships, are stable in MRIs acquired at different
times, and are robust to differences in data triangulation, and resolution. Compared with other brain surface
conformal mapping algorithms, our algorithm is more stable and has good extensibility.

1. INTRODUCTION

Recent developments in brain imaging have accelerated the collection and databasing of brain maps. Nonetheless,
computational problems arise when integrating and comparing brain data. One way to analyze and compare
brain data is to map them into a canonical space while retaining geometric information on the original structures
as far as possible.3–7

1.1. Previous work

Conformal surface parameterizations have been studied intensively. Most works on conformal parameterizations
deal with surface patches homeomorphic to topological disks. For surfaces with arbitrary topologies, Gu and
Yau1 introduce a general conformal parametrization based on a nonlinear flow for the genus zero case, and on the
structure of cohomology group of holomorphic one form in the case of genus greater than one. They generalize
the method for surfaces with boundaries in.2 In this paper, we apply part of these algorithms (for genus zero)
to cortical surface matching problem and report our experimental results. In particular, the algorithms used in
Section II, III, and IV, are from1, 2 and the data compression using spherical harmonic was also conceived there
for other purposes.

For genus zero surfaces, there are five basic approaches to achieve conformal parameterizations.

1. Harmonic energy minimization. Eck et al.8 introduce the discrete harmonic map, which approximates
the continuous harmonic map9 by minimizing a metric dispersion criterion. Desbrun et al.10, 11 compute
the discrete Dirichlet energy and apply conformal parameterization to interactive geometry remeshing.
Pinkall and Polthier compute the discrete harmonic map and Hodge star operator for the purpose of
creating a minimal surface.12 Kanai et al. use a harmonic map for geometric metamorphosis in.13
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While discrete harmonic map were used, it is not clear that it approximates the harmonic map defined
in the smooth category. Gu and Yau in1 introduce a non-linear optimization method to compute global
conformal parameterizations for genus zero surfaces. The optimization is carried out in the tangent spaces
of the sphere. It is different from the previous optimization methods. It computes global parametrizations
for genus zero surfaces.

2. Cauchy-Riemann equation approximation. Levy et al.14 compute a quasi-conformal parameterization of
topological disks by approximating the Cauchy-Riemann equation using the least squares method. They
show rigorously that the quasi-conformal parameterization exists uniquely, and is invariant to similarity
transformations, independent of resolution, and orientation preserving.

3. Laplacian operator linearization. Haker et al.5, 15 use a method to compute a global conformal mapping
from a genus zero surface to a sphere by representing the Laplace-Beltrami operator as a linear system.

4. Angle based method. Sheffer et al.16 introduce an angle based flattening method to flatten a mesh to a 2D
plane so that it minimizes the relative distortion of the planar angles with respect to their counterparts in
the three-dimensional space.

5. Circle packing. Circle packing is introduced in.4, 17 Classical analytic functions can be approximated using
circle packing. For general surfaces in R

3, the circle packing method considers only the connectivity but
not the geometry, so it is not suitable for our parameterization purpose.

1.2. Basic Idea

It is well known that any genus zero surface can be mapped conformally onto the sphere and any local portion
thereof onto a disk. This mapping, a conformal equivalence, is one-to-one, onto, and angle-preserving. Moreover,
the elements of the first fundamental form remain unchanged, except for a scaling factor (the so-called Conformal
Factor). For this reason, conformal mappings are often described as being similarities in the small. Since the
cortical surface of the brain is a genus zero surface, conformal mapping offers a convenient method to retain local
geometric information, when mapping data between surfaces. We illustrate the conformal parameterization via
the texture mapping of a checker board in Figure 1.

(a) (b) (c)

Figure 1. Conformal surface parameterization examples. (a) is a real male face. (c) is a square into which the human
face is conformally mapped. (b) is the conformal parameterization illustrated by the texture map. As shown, the right
angles on the checkboard are well preserved on the surface in (b).

Indeed, several groups have created flattened representations or visualizations of the cerebral cortex or cerebel-
lum4, 5 using conformal mapping techniques. However, these approaches are either not strictly angle preserving,4

or there may be areas with large geometric distortions .5 In this paper, we propose a new genus zero sur-
face conformal mapping algorithm1 and demonstrate its use in computing conformal mappings between brain

242     Proc. of SPIE Vol. 5370



surfaces. Our algorithm depends only on the surface geometry and is invariant to changes in image resolution
and the specifics of the data triangulation. Our experimental results show that our algorithm has advantageous
properties for cortical surface matching.

Suppose K is a simplicial complex, and f : |K| → R3, which embeds |K| in R3; then (K, f) is called a mesh.
Given two genus zero meshes M1, M2, there are many conformal mappings between them. Our algorithm for
computing conformal mappings is based on the fact that for genus zero surfaces S1, S2, f : S1 → S2 is conformal
if and only if f is harmonic. All conformal mappings between S1, S2 form a group, the so-called Möbius group.
Figure 2 show some examples of Möbius transformations. We can conformally map the surface of the head of
Michelangelo’s David to a sphere. When we draw the longitude and latitude lines on the sphere, we can induce
correspond circles on the original surface (a) and (b). We apply a Möbius transformation to the sphere and make
the two eyes become north and south poles. When we draw the longitude and latitude lines again (c), we get
an interesting result shown in (d). Note all the right angles between the lines are well preserved in (b) and (d).
This example demonstrates that all the conformal mapping results form a Möbius group.

(a) (b) (c) (d)

Figure 2. Möbius transformation example. We conformally map the surface of the head of Michelangelo’s David to a
sphere. In (a), we select the nose tip as the north pole and draw longitude lines and latitude lines on the sphere. (b)
shows the results on the original David head model. We apply a Möbius transformation on the sphere in (a) and make
the two eyes become the north and south poles. When drawing the longitude lines and latitude on the sphere (c), we get
an interesting configuration for the lines on the original surface (d).

Our method is as follows: we first find a homeomorphism h between M1 and M2, then deform h such that
h minimizes the harmonic energy. To ensure the convergence of the algorithm, constraints are added; this also
ensures that there is a unique conformal map.

This paper is organized as follows. In Section 2, we give the definitions of a piecewise linear function space,
inner product and piecewise Laplacian. In Section 3, we describe the steepest descent algorithm which is used to
minimize the string energy. In Section 4, we detail our conformal spherical mapping algorithms. Experimental
results on conformal mapping for brain surfaces are reported in Section 7. We conclude the paper in Section 8.

2. PIECEWISE LINEAR FUNCTION SPACE, INNER PRODUCT AND LAPLACIAN

For the diffeomorphisms between genus zero surfaces, if the map minimizes the harmonic energy, then it is
conformal. Based on this fact, the algorithm is designed as a steepest descent method.

This section formulates the mathematical concepts in a rigorous way. The major concepts, the harmonic
energy of a map and its derivative, are defined. Because all the calculation is carried out on surfaces, we use
the absolute derivative. Furthermore, for the purpose of implementation, we introduce the definitions in discrete
form.

We use K to represent the simplicial complex, u, v to denote the vertices, and {u, v} to denote the edge
spanned by u, v. We use f, g to represent the piecewise linear functions defined on K, use �f to represent vector
value functions. We use ∆PL to represent the discrete Laplacian operator.

Definition 2.1. All piecewise linear functions defined on K form a linear space, denoted by CPL(K).
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In practice, we use CPL(K) to approximate all functions defined on K. So the final result is an approximation
to the conformal mapping. The higher the resolution of the mesh is, the more accurate the approximated
conformal mapping is.

Definition 2.2. }labelinnerproduct Suppose a set of string constants ku,v are assigned for each edge {u, v}, the
inner product on CPL is defined as the quadratic form

< f, g >=
1
2

∑
{u,v}∈K

ku,v(f(u) − f(v))(g(u) − g(v)) (1)

The energy is defined as the norm on CPL.

Definition 2.3. Suppose f ∈ CPL, the string energy is defined as:

E(f) =< f, f >=
∑

{u,v}∈K

ku,v||f(u) − f(v)||2 (2)

By changing the string constants ku,v in the energy formula, we can define different string energies.

Definition 2.4. If string constants ku,v ≡ 1, the string energy is known as the Tuette energy.

Definition 2.5. Suppose edge {u, v} has two adjacent faces Tα, Tβ, with Tα = {v0, v1, v2}, define the parameters

aα
v1,v2

=
1
2

(v1 − v3) · (v2 − v3)
|(v1 − v3) × (v2 − v3)| (3)

aα
v2,v3

=
1
2

(v2 − v1) · (v3 − v1)
|(v2 − v1) × (v3 − v1)| (4)

aα
v3,v1

=
1
2

(v3 − v2) · (v1 − v2)
|(v3 − v2) × (v1 − v2)| (5)

(6)

Tβ is defined similarly. If ku,v = aα
u,v + aβ

u,v, the string energy obtained is called the harmonic energy.

The string energy is always a quadratic form. By carefully choosing the string coefficients, we make sure the
quadratic form is positive definite. This will guarantee the convergence of the steepest descent method.

Definition 2.6. The piecewise Laplacian is the linear operator ∆PL : CPL → CPL on the space of piecewise
linear functions on K, defined by the formula

∆PL(f) =
∑

{u,v}∈K

ku,v(f(v) − f(u)) (7)

If f minimizes the string energy, then f satisfies the condition ∆PL(f) = 0. Suppose M1, M2 are two meshes
and the map �f : M1 → M2 is a map between them, �f can be treated as a map from M1 to R3 also.

Definition 2.7. For a map �f : M1 → R3, �f = (f0, f1, f2), fi ∈ CPL, i = 0, 1, 2, we define the energy as the
norm of �f :

E(�f) =
2∑

i=0

E(fi) (8)

The Laplacian is defined in a similar way,

Definition 2.8. For a map �f : M1 → R3 , the piecewise Laplacian of �f is

∆PL
�f = (∆PLf0, ∆PLf1, ∆PLf2) (9)
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A map �f : M1 → M2 is harmonic, if and only if ∆PL
�f only has a normal component, and its tangential

component is zero.

∆PL(�f) = (∆PL
�f)⊥ (10)

3. STEEPEST DESCENT ALGORITHM

Suppose we would like to compute a mapping �f : M1 → M2 such that �f minimizes a string energy E(�f). This
can be solved easily by the steepest descent algorithm:

d�f(t)
dt

= −∆�f(t) (11)

�f(M1) is constrained to be on M2, so −∆�f is a section of M2’s tangent bundle.

Specifically, suppose �f : M1 → M2, and denote the image of each vertex v ∈ K1 as �f(v). The normal on
M2 at �f(v) is �n(�f(v)). Define the normal component as

Definition 3.1. The normal component

(∆�f(v))⊥ =< ∆�f(v), �n(�f(v)) > �n(�f(v)), (12)

where <, > is the inner product in R3.

Definition 3.2. The absolute derivative is defined as

D �f(v) = ∆�f(v) − (∆�f(v))⊥ (13)

Then equation (14) is δ �f = −D �f × δt.

4. CONFORMAL SPHERICAL MAPPING

Suppose M2 is S2, then a conformal mapping �f : M1 → S2 can be constructed by using the steepest descent
method. The major difficulty is that the solution is not unique but forms a Möbius group.

Definition 4.1. Mapping f : C → C is a Möbius transformation if and only if

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad − bc �= 0, (14)

where C is the complex plane.

All Möbius transformations form the Möbius transformation group. In order to determine a unique solution
we can add different constraints. In practice we use the following two constraints: the zero mass-center constraint
and a landmark constraint.

Definition 4.2. Mapping �f : M1 → M2 satisfies the zero mass-center condition if and only if
∫

M2

�fdσM1 = 0, (15)

where σM1 is the area element on M1.

All conformal maps from M1 to S2 satisfying the zero mass-center constraint are unique up to the Euclidean
rotation group (which is 3 dimensional). We use the Gauss map as the initial condition.
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Definition 4.3. A Gauss map N : M1 → S2 is defined as

N(v) = �n(v), v ∈ M1, (16)

where �n(v) is the normal at v.

Algorithm 1. Spherical Tuette Mapping

Input (mesh M ,step length δt, energy difference threshold δE), output(�t : M → S2) where �t minimizes the
Tuette energy.

1. Compute Gauss map N : M → S2. Let �t = N , compute Tuette energy E0.

2. For each vertex v ∈ M , compute Absolute derivative D�t.

3. Update �t(v) by δ�t(v) = −D�t(v)δt.

4. Compute Tuette energy E.

5. If E − E0 < δE, return �t. Otherwise, assign E to E0 and repeat steps 2 through to 5.

Because the Tuette energy has a unique minimum, the algorithm converges rapidly and is stable. We use it
as the initial condition for the conformal mapping.

Algorithm 2. Spherical Conformal Mapping

Input (mesh M ,step length δt, energy difference threshold δE), output(�h : M → S2). Here �h minimizes the
harmonic energy and satisfies the zero mass-center constraint.

1. Compute Tuette embedding �t. Let �h = �t, compute Tuette energy E0.

2. For each vertex v ∈ M , compute the absolute derivative D�h.

3. Update �h(v) by δ�h(v) = −D�h(v)δt.

4. Compute Möbius transformation �ϕ0 : S2 → S2, such that

Γ(�ϕ) =
∫

S2
�ϕ ◦ �hdσM1 , �ϕ ∈ Mobius(CP 1) (17)

�ϕ0 = min
�ϕ

||Γ(�ϕ)||2 (18)

where σM1 is the area element on M1. Γ(�ϕ) is the mass center, �ϕ minimizes the norm in the mass center
condition.

5. compute the harmonic energy E.

6. If E − E0 < δE, return �t. Otherwise, assign E to E0 and repeat step 2 through to step 6.

Step 4 is non-linear and expensive to compute. In practice we use the following procedure to replace it:

1. Compute the mass center �c =
∫

S2
�hdσM1 ;

2. For all v ∈ M , �h(v) = �h(v) − �c;

3. For all v ∈ M , �h(v) =
�h(v)

||�h(v)|| .

This approximation method is good enough for our purpose. By choosing the step length carefully, the energy
can be decreased monotonically at each iteration.
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5. OPTIMIZE THE CONFORMAL PARAMETERIZATION BY LANDMARKS

In order to compare two brain surfaces, it is desirable to adjust the conformal parameterization and match
the geometric features on the brains as well as possible. We define an energy to measure the quality of the
parameterization. Suppose two brain surfaces S1, S2 are given, conformal parameterizations are denoted as
f1 : S2 → S1 and f2 : S2 → S2, the matching energy is defined as

E(f1, f2) =
∫

S2
||f1(u, v) − f2(u, v)||2dudv (19)

We can composite a Möbius transformation τ with f2, such that

E(f1, f2 ◦ τ) = min
ζ∈Ω

E(f1, f2 ◦ ζ), (20)

where Ω is the group of Möbius transformations. We use landmarks to obtain the optimal Möbius transfor-
mation. Landmarks are commonly used in brain mapping. We manually label the landmarks on the brain as a
set of sulcal curves,6 as shown in Figure 7. First we conformally map two brains to the sphere, then we pursue
an optimal Möbius transformation to minimize the Euclidean distance between the corresponding landmarks
on the spheres. Suppose the landmarks are represented as discrete point sets, and denoted as {pi ∈ S1} and
{qi ∈ S2}, pi matches qi, i = 1, 2, . . . , n. The landmark mismatch functional for u ∈ Ω is defined as

E(u) =
n∑

i=1

||pi − u(qi)||2, u ∈ Ω, pi, qi ∈ S2 (21)

In general, the above variational problem is a nonlinear one. In order to simplify it, we convert it to a least
squares problem. First we project the sphere to the complex plane, then the Möbius transformation is represented
as a complex linear rational formula, Equation 14. We add another constraint for u, so that u maps infinity to
infinity. That means the north poles of the spheres are mapped to each other. Then u can be represented as a
linear form az + b. Then the functional of u can be simplified as

E(u) =
n∑

i=1

g(zi)|azi + b − τi|2 (22)

where zi is the stereo-projection of pi, τi is the projection of qi, g is the conformal factor from the plane to
the sphere, it can be simplified as

g(z) =
4

1 + zz̄
. (23)

So the problem is a least squares problem.

6. SPHERICAL HARMONIC ANALYSIS

Let L2(S2) denote the Hilbert space of square integrable functions on the S2. In spherical coordinates, θ is taken
as the polar (colatitudinal) coordinate with θ ∈ [0, π], and φ as the azimuthal (longitudinal) coordinate with
φ ∈ [0, 2π). The usual inner product is given by

< f, h >=
∫ π

0

[
∫ 2π

0

f(θ, φ)h(θ, φ)dφ] sin θdθ.

A function f : S2 → R is called a Spherical Harmonic, if it is an eigenfunction of Laplace-Beltrami operator,
namely ∆f = λf , where λ is a constant. There is a countable set of spherical harmonics which form an
orthonormal basis for L2(S2).
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For any nonnegative integer l and integer m with |m| ≤ l, the (l, m)−spherical harmonic Y m
l is a harmonic

homogeneous polynomial of degree l. The harmonics of degree l span a subspace of L2(S2) of dimension 2l + 1
which is invariant under the rotations of the sphere. The expansion of any function f ∈ L2(S2) in terms of
spherical harmonics can be written

f =
∑
l≥0

∑
|m|≤l

f̂(l, m)Y m
l

and f̂(l, m) denotes the (l, m) Fourier coefficient, equal to < f, Y m
l >. Spherical harmonic Y m

l has an explicit
formula

Y m
l (θ, φ) = kl,mPm

l (cosθ)eimφ,

where Pm
l is the associated Legendre function of degree l and order m and kl,m is a normalization factor. The

details are explained in.18

Once the brain surface is conformally mapped to S2, the surface can be represented as three spherical
functions, x0(θ, φ), x1(θ, φ) and x2(θ, φ). The function xi(θ, φ) ∈ L2(S2) is regularly sampled and transformed
to x̂i(l, m) using Fast Spherical Harmonic Transformation as described in.19

Many processing tasks that use the geometric surface of the brain can be accomplished in the frequency
domain more efficiently, such as geometric compression, matching, surface denoisng, feature detection, and
shape analysis.20, 21

Similar to image compression using Fourier analysis, geometric brain data can be compressed using spherical
harmonic analysis.20 Global geometric information is concentrated in the low frequency part, whereas noise and
locally detailed information is concentrated in the high frequency part. By using low pass filtering, we can keep
the major geometric features and compress the brain surface without losing too much information.

7. EXPERIMENTAL RESULTS

The 3D brain meshes are reconstructed from 3D 256x256x124 T1 weighted SPGR (spoiled gradient) MRI images,
by using an active surface algorithm that deforms a triangulated mesh onto the brain surface.7 Figure 3(a) and
(c) show the same brain scanned at different times.6 Because of the inaccuracy introduced by scanner noise in
the input data, as well as slight biological changes over time, the geometric information is not exactly the same.
Figure 3(a) and (c) reveal minor differences.

(a) (b) (c) (d)

Figure 3. Reconstructed brain meshes and their spherical harmonic mappings. (a) and (c) are the reconstructed surfaces
for the same brain scanned at different times. Due to scanner noise and inaccuracy in the reconstruction algorithm, there
are visible geometric differences. (b) and (d) are the spherical conformal mappings of (a) and (c) respectively; the normal
information is preserved. By the shading information, the correspondence is illustrated.

The conformal mapping results are shown in Figure 3(b) and (d). From this example, we can see that although
the brain meshes are slightly different, the mapping results look quite similar. The major features are mapped
to the same position on the sphere. This suggests that the computed conformal mappings continuously depend
on the geometry, and can match the major features consistently and reproducibly. In other words, conformal
mapping may be a good candidate for a canonical parameterization in brain mapping.
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(a) (b)

Figure 4. Conformal texture mapping. (a) Texture mapping of the sphere; (b) Texture mapping of the brain. The
conformality is visualized by texture mapping of a checkerboard image. The sphere is mapped to the plane by stereographic
projection, then the planar coordinates are used as the texture coordinates. This texture parameter is assigned to the
brain surface through the conformal mapping between the sphere and the brain surface. All the right angles on the texture
are preserved on the brain surface.

Figure 4 shows the mapping is conformal by texture mapping a checkerboard to both the brain surface mesh
and a spherical mesh. Each black or white square in the texture is mapped to sphere by stereographic projection,
and pulled back to the brain. Note that the right angles are preserved both on the sphere and the brain.

(a) (b)

Figure 5. Conformal mappings of surfaces with different resolutions. (a).Surface with 20, 000 faces; (b) Surface with
50, 000 faces. The original brain surface has 50,000 faces, and is conformally mapped to a sphere, as shown in (a). Then
the brain surface is simplified to 20,000 faces, and its spherical conformal mapping is shown in (b).

Conformal mappings are stable and depend continuously on the input geometry but not on the triangulations,
and are insensitive to the resolutions of the data. Figure 5 shows the same surface with different resolutions, and
their conformal mappings. The mesh simplification is performed using a standard method. The refined model
has 50k faces, coarse one has 20k faces. The conformal mappings map the major features to the same positions
on the spheres.

In order to measure the conformality, we map the iso-polar angle curves and iso-azimuthal angle curves from
the sphere to the brain by the inverse conformal mapping, and measure the intersection angles on the brain.
The distribution of the angles of a subject(A) are illustrated in Figure 6. The angles are concentrated about the
right angle.

Figure 7 shows the landmarks, and the result of the optimization by a Möbius transformation. We also
computed the matching energy, following Equation 19. We did our testing on three example subjects. Their
information is shown in Table 1. We took subject A as the target brain. For each new subject model, we found
a Möbius transformation that minimized the landmark mismatch energy on the maximum intersection subsets
of it and A. As shown in Table 1, the matching energies were reduced after the Möbius transformation.

Figure 8 illustrates the geometric compression results using spherical harmonic compression. The low pass
filter is applied to remove high frequency components, and the L2 error is measured between the reconstructed
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Figure 6. Conformality measurement. (a) Intersection angles; (b) Angle distribution. The curves of iso-polar angle and
iso-azimuthal angle are mapped to the brain, and the intersection angles are measured on the brain. The histogram is
illustrated.

Subject Vertex # Face # Before After
A 65,538 131,072 - -
B 65,538 131,072 604.134 506.665
C 65,538 131,072 414.803 365.325

Table 1. Matching energy for three subjects. Subject A was used as the target brain. For subjects B and C, we found
Möbius transformations that minimized the landmark mismatch functions, respectively.

(a) (b) (c) (d)

Figure 7. Möbius transformation to minimize the deviations between landmarks. The blue curves are the landmarks.
The correspondence between curves has been preassigned. The desired Möbius transformation is obtained to minimize
the matching error on the sphere.
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surface and the original surface.

(a) (b) (c) (d)

Figure 8. This figure illustrates the geometry compression results using spherical harmonics. After we conformally map
the brain to a sphere, we can use spherical harmonics to compress the geometry. (a) is the original brain surface. (b), (c)
and (d) are brain surfaces reconstructed from spherical harmonics with 1

8
, 1

64
and 1

256
of original low frequency coefficients,

separately.

Figure 9. Spherical conformal mapping of genus zero surfaces. Extruding parts (such as fingers and toes) are mapped
to denser regions on the sphere.

8. CONCLUSION AND FUTURE WORK

In this paper, we apply part of the algorithms1, 2 (for genus zero) to cortical surface matching problem. The
algorithm finds a unique conformal mapping between genus zero manifolds. Our method only depends on the
surface geometry and not on the mesh structure (i.e. gridding) and resolution. Our algorithm is very fast and
stable in reaching a solution. There are numerous applications of these mapping algorithms, such as providing
a canonical space for automated feature identification, brain to brain registration, brain structure segmentation,
brain surface denoising, shape analysis and convenient surface visualization, among others. We are trying to
generalize this approach to compute conformal mappings between non-zero genus surfaces.
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