
Pattern Recognition 37 (2004) 1479–1497
www.elsevier.com/locate/patcog

Table structure understanding and its performance evaluation

Yalin Wanga ;∗, Ihsin T. Phillipsb , Robert M. Haralickc
aDepartment of Electrical Engineering, University of Washington, Seattle, WA 98195, USA

bDepartment of Computer Science, Queens College, CUNY, Flushing, NY 11367, USA
cThe Graduate School, CUNY, New York, NY 10016, USA

Received 9 September 2003; received in revised form 26 January 2004; accepted 26 January 2004

Abstract

This paper presents a table structure understanding algorithm designed using optimization methods. The algorithm is
probability based, where the probabilities are estimated from geometric measurements made on the various entities in a large
training set. The methodology includes a global parameter optimization scheme, a novel automatic table ground truth generation
system and a table structure understanding performance evaluation protocol. With a document data set having 518 table and
10,934 cell entities, it performed at the 96.76% accuracy rate on the cell level and 98.32% accuracy rate on the table level.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Pattern recognition; Document image analysis; Document layout analysis; Table structure understanding; Performance
evaluation; Non-parametric statistical modeling; Optimization

1. Introduction

For the last three decades, document image analysis re-
searchers have successfully developed many outstanding
methods for character recognition, page segmentation and
understanding of text-based documents. Most of these meth-
ods were not designed to handle documents containing com-
plex objects, such as tables. Tables are compact and e>-
cient for presenting relational information and most of the
documents produced today contain various types of tables.
Thus, table structure understanding is an important problem
in the document layout analysis ?eld. Its application can be
found in image-XML conversion, information retrieval, and
document classi?cation, etc.

In this paper, we formulate the table structure under-
standing problem in the whole document hierarchy. We use
a statistical based table structure understanding algorithm.

∗ Corresponding author. Mathematics Department, Box 951555,
UCLA, Los Angeles, CA 90095, USA. Tel.: +1-310-825-8525;
fax: +1-310-206-6673.
E-mail addresses: ylwang@math.ucla.edu (Y. Wang),

yun@image.cs.qc.edu (I.T. Phillips), haralick@gc.cuny.edu
(R.M. Haralick).

To systematically evaluate and optimize the algorithms, we
use a performance evaluation protocol employing an area
overlapping measure. Using this protocol, our global pa-
rameter optimization scheme is able to adaptively determine
optimum tuning parameter values.

Ground truthing is tedious and time-consuming. We de-
veloped an automatic table ground truthing system that can
analyze any given ground truth tables and generate docu-
ments having similar table elements while adding more va-
riety to both table and non-table parts. Using our content
matching ground truthing idea, the table ground truth data
for the generated table elements become available with lit-
tle manual work. We make this software package publicly
available.

The remainder of the paper is organized as follows. We
give a literature review in Section 2. We present a document
structure model and a formal table structure understanding
problem statement in Section 3. In Section 4, we present a
framework to solve the table structure understanding prob-
lem, in which each step is discussed in detail. Large data sets
with ground truth are essential in assessing the performance
of computer vision algorithms. However, as of the writing
of this paper, there are no publicly available table ground
truth data sets. We developed a software package that can

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2004.01.012

mailto:ylwang@math.ucla.edu
mailto:yun@image.cs.qc.edu
mailto:haralick@gc.cuny.edu

1480 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

simulate any given table ground truth with additional con-
trolled variety. Section 5 describes how we generated the
random tables. In Section 6, we describe a table structure
understanding performance evaluation protocol based on
rectangular overlap. In Section 7, our detailed experimental
results are given and compared with other competing algo-
rithms. Conclusions and future work are given in Section 8.

2. Literature review

Tables are an important means for communicating infor-
mation in documents, and understanding such tables is a
challenging problem in document layout analysis. Although
there are diJerent document formats, e.g. document images,
ASCII text documents, web documents, etc., here we focus
on table structure understanding in document images.

Some tables are similar to ruled forms. Many papers were
published for form processing [1–3]. In form data extraction,
templates are constructed from empty forms and correlated
with ?lled-in forms. Form processing emphasizes extracting
data from some given forms. Table structure understanding
mainly deals with those tables embedded in the documents.
The tables usually have an unknown format. Table structure
understanding algorithm segments tables from the document
pages and extracts the information from these tables.

The table structure understanding problem includes two
subproblems: the table detection problem and the table de-
composition problem. Since table detection is a crucial step
for table structure understanding, it is also a topic which is
of interest to many researchers. By the strategies or methods
in which algorithms are used in the table detection, the algo-
rithms can be classi?ed into three categories: (1) pre-de?ned
table layout based; (2) heuristics based; and (3) statistical or
optimization based. The pre-de?ned table layout based algo-
rithms use a set of strict, pre-de?ned table layout informa-
tion to detect tables. For a given type of image, it is usually
able to have a satisfactory detection performance. However,
its extension ability is very limited. The heuristics based al-
gorithms use a set of rules or pre-de?ned syntax rules of
table grammar to derive decisions. The complex heuristics
are usually based on local analysis. It sometimes has a even
more complicated post-processing part. As for statistical or
optimization based algorithms, they either do not need pa-
rameters or the needed free parameters which are used in
the process are obtained by an oJ-line training process. We
now summarize some selected algorithms within the above
de?ned categories.

Chandran and Kasturi [4] gave a clear algorithm to ex-
tract the structure of the table, regardless of the presence or
the absence of lines. For the class of tables satisfying their
assumption, their method worked well.

Green and Krishnamoorthy [5] developed a strategy for
extracting the underlying relational information from the
images of printed tables. Given a table model, the visual
clues that exist in the images were used for extracting ?rst

the physical, and then the logical structure of the tables. A
table model was used to extract logical table information
from table images.

Shamilian et al. [6] described the architecture of a sys-
tem for reading machine-printed documents in known
pre-de?ned tabular-data layout styles. In these tables, textual
data are presented in record lines made up of ?xed-width
?elds. The row-and-column structure of horizontal tables
suggests an analogy with relational databases. The system
was applied to more than 400 distinct tabular layouts.

Zuyev [7] introduced a concept of a table grid that can
serve for advanced methods of table structure analysis.
Table hypothesis generation was guided by visual clues.
Classi?cation of a generated hypothesis required some
threshold values that were obtained by an analysis of the
connected components projection pro?le.

Kieninger et al. [8,9] presented a bottom-up approach to
the table detection algorithm. First an arbitrary word was
selected as the seed. Then the local adjacency connection
relation was used to expand to a whole text block. Later,
some post-processing to the initial block segments was done
to get re?ned results.

A dynamic programming table detection algorithm was
given in Hu et al. [10]. By de?ning table quality measures,
it detected tables based on computing an optimal partition-
ing of a document into some number of tables. Its high-level
framework is independent of any particular table quality
measure and independent of the document medium. The al-
gorithm works for both ASCII and image documents. Ac-
cording to their global evaluation protocol, the algorithm
yields a recall rate of 83% for 25 ASCII documents and 81%
for 25 scanned images, and a precision rate of 91% and at
93%, respectively.

Klein et al. [11] introduced three approaches for an indus-
trial document analysis system. These approaches include:
searching for a set of known table headers, searching for lay-
out structures which resemble parts of columns, and search-
ing for groupings of similar lines. Approach 1 was not toler-
ant enough toward some kinds of even minor aberrations and
was able to spot about 80% of all table headers. Approach
2 yielded 90% correctness in a test on 1200 real documents.
No experimental results were reported for approach 3.

Two papers [12,13] reported their research on the table de-
composition problem. Handley [13] presented a table analy-
sis system which reconstructed table formatting information
from table images no matter whether or not the cells were
explicitly delimited. Inputs to the system were word bound-
ing boxes and any horizontal and vertical lines that delimit
cells. Using a sequence of carefully crafted rules, multi-line
cells and their inter-relationships are found even though no
explicit delimiters are visible. Hu et al. [12] presented algo-
rithms that recognize tables in ASCII text. First hierarchi-
cal clustering was used to identify columns and then spatial
and lexical criteria were used to classify headers. The algo-
rithm was tested on 26 Wall Street Journal articles in text
format (WSJ database) and 16 email messages. The overall

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1481

agreement was 82% for the WSJ documents and 73% for
the email documents.

Hu et al. [14] introduced intuitive, easy-to-implement
evaluation schemes for the related problem of table detec-
tion and table structure recognition. They ?rst considered
diJerent errors of table detection problem. Then they ad-
dressed the problem of evaluating table structure recogni-
tion by using a directed acyclic attribute graph, or table
DAG. The so-called “graph probing” is a general concept
that could be applied to other document recognition tasks
as well.

The principle that for every document analysis task there
exists a mechanism for creating well-de?ned ground truth
is a widely held tenet. Past experience in the research com-
munity with standard data sets providing ground truth for
character recognition and page segmentation tasks supports
this belief. However, Hu et al. [15] reported a number of
serious hurdles connected with the groundtruthing of tables
from UW Document Image Database (UWI) [16]. From
their experience, there may exist more than one accept-
able “truth” and/or incomplete or partial “truth” for table
entities.

Although there is continuing interest in the table un-
derstanding problem, there are no publicly available table
ground truth data sets. In the UW document image database
III (UWCDROM III) [17], there are 215 marked table zones
but no structure data for them. Detailed table structure in-
formation is required for a table detection system evaluation
[18]. Clearly, UW CDROM III cannot be directly used to
evaluate table detection system.

Nonetheless, large data sets with ground truth are essen-
tial in assessing the performance of computer vision algo-
rithms. Manually generating document ground truth proved
to be very costly. According to Hu et al.’s research [15],
there may exist more than one acceptable “truth” and/or in-
complete or partial “truth”. Such problems occur because
of inherent ambiguity or ground truth bias or inconsistency.
They are not easily eliminated. However, using synthetic
data [19] at some research phase is a common practice in
computer vision ?eld. It has the advantage of extremely low
cost, automatic creation of ground truth information, less
bias aberrations and more variety than the real images. So
far, the problem of generation of synthetic table data sets
for research has not received enough attention from the re-
searchers in the document layout analysis ?eld.

3. Table structure understanding problem statement

3.1. Document structure model

We formally de?ne aRectangle Layout Structure (RLS)
as a triple (C; R; Q), where

• R is a rectangular area;
• Q is a physical label type (e.g. page, textblock, table, etc.);

• C is either empty or a set of rectangle layout structures
{Cn; Rn; �n}Nn=1, satisfying that {R1; : : : ; Rn} is a cover
of R.

We denote by D the set of RLSs in a given document
image. Some functions are associated with D.

1. Attributes
• We denote by F the set of format attributes (column

number, row number, column justi?cation, etc.).
• S: D → F speci?es the format attributes for each

rectangle layout structure.
2. Measurements

• We denote by � the measurement space.
• V :˝(D) → � speci?es measurement made on subset

of D.

With this model, a table is a RLS (C; R; Q), where

• Q is the label table.
• The RLS inC must have labels from a set {table body, row

header, column header, horizontal/vertical blank block}.
• One RLS of C must have the label table body.
• At least one RLS of C must have the label horizontal

blank block.
• At least one RLS of C must have the label vertical blank

block,

where horizontal/vertical blank block are a continuous
area of background pixels. Their formal de?nitions can be
founded at [20].
Similarly, we de?ned page, textblock, table row header,

table column header and table body, etc. [20]. We give an
example of a document hierarchy model using this idea in
Fig. 1.

3.2. Problem statement

The table structure understanding problem has two sub-
problems: the table detection problem and the table de-
composition problem. With the de?ned document structure
model, we can de?ne tablezone, textzone, documentpage
[20]. Fig. 2(a) shows a document hierarchy including doc-
umentpage, tablezone and textzone entities. The problem of
table detection can be formulated as: Given a page � having
a rectangle area R and a set of words, W , table detection
constructs a RLS (C; R; Q), where

• Q is the label documentpage.
• P((C; R; Q)|�) is maximized.
• Each word of W participates in exactly one RLS in C
or in its descendants.

Fig. 2(b) shows a table structure. Under tablezone level,
we have row header, column header and cell entities. Given
a detected table entity, the table decomposition problem is

1482 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

textblock table v/h bb

v/h bb

v/h bb

v/h bb

line

word cell cell

..

…..

….. ...

…..

….. …

…..

….. … ..

…..

…..

…..

…..…..

….

…..

….. … ..…..

….. … .. …..

word

…..

v/h bb

v/h bbv/h bb

v/h bb

v/h bb

v/h bbv/h bb

v/h bb v/h bb

v/h bb

Row - header

glyph glyph glyph

word

….

Column - header Table - body

cell

word
….. …..

….. …..

…..

…..

….. … ..

line line line v/h bbv/h bbv/h bb

documentpage

..

…..

….. ...

…..

….. …

…..

….. … ..

…..

…..

…..…..

….

…. …..

….. … .. …..…..

….

….. …..

..

…..

…..

….. … ..

….

….. …..

…..

…..

….. … ..

Fig. 1. Illustrates a document hierarchy model, where “v=hbb” stands for vertical/horizontal blank block.

documentpage

tablezone textzone v/h bb

word wordv/h bb v/h bb

v/h bb v/h bbglyph glyph

…………

……

……

……

……

…… …… ……

……

table

row−header table−
body

v/h bb

cell

word

glyph

cell cell

word word

glyph glyph

v/h bb v/h bb v/h bb

v/h bb v/h bb v/h bb

v/h bbv/h bb v/h bb

column−
header φ

φ

φ1

2

3

(a) (b)

Fig. 2. (a) Illustrates a table hierarchy model for table detection problem, where “v=hbb” stands for vertical/horizontal blank block;
(b) illustrates a table hierarchy model for table decomposition problem.

to determine its structure and identify its elements such as
row/column headers, cells, etc.

4. Table structure understanding algorithm

In this section, we discuss a framework to solve the table
structure understanding problem. We present the algorithm
details for each step. Among these steps, column style la-
beling, statistical re?nement, iterative updating optimization
algorithms are probability based, where the probabilities are
estimated from geometric measurements made on the vari-
ous entities with which the algorithm works in a large train-
ing set. The oJ-line probabilities estimated in the training
then drive all decisions in the on-line segmentation module.
Thus our algorithms have the advantages such as domain
independence, and easy extension.

Fig. 3 gives an overview of the table structure understand-
ing algorithm. Input data to our table structure understand-
ing system are the segmented line and word entities with
roughly separated regions [21]. Fig. 4 shows an example of
an input image. Assuming the maximum number of columns
is two in our data set, we designed a column style labeling
algorithm which can label a given page by one of the three
column styles: double column, single column with marginal
note and single or mixed column style. Using background
analysis, we ?nd table candidates by looking for large hor-
izontal blank block equivalence subsets. For the identi?ed
table candidates, a statistical re?nement module was used to
re?ne the table detection results. Then we consider the ta-
ble detection problem as an optimization problem. The opti-
mization not only considers the probability of table entities,
but also the probability of text block segmentation results.
It attempts a probability optimization on the table and its

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1483

equivalence subsets location
Large horizontal blank block

Line, word segmentation results

Column style labeling & line/word adjustment

Updated line, word results

Initial tablezones and nontable regions

Statistical refinement

Updated tablezones and nontable regions Tablezones with their hierarchy and text blocks

Table decomposition

Detected tablezones and text blocks

Iterative updating optimization

Updated tablezones and text blocks

Text block segmentation

Fig. 3. Overview of the table structure understanding algorithm.

Fig. 4. An example of input data to table structure understanding
algorithm. The graphic parts in the image have been ?ltered. Seg-
mented line entities are shown.

adjacent text block segmentation results by an iterative up-
dating method. Our table decomposition algorithm is similar
to the X–Y cut technique [22]. We obtain the cell entities
by an analysis of word vertical projection results. In each
step, some tuning parameters are used. To unify the whole

approach and improve the algorithm performance, we em-
ploy a global parameter optimization scheme which can op-
timize the tuning parameter values by using our performance
evaluation protocol and some maximum of function meth-
ods.

The diJerent stages are shown in Fig. 3. We used a text
block segmentation method [23] to get block segmentation
results. Other steps, column style labeling, large horizontal
blank block equivalence subsets location, statistical re?ne-
ment, iterative updating optimization, table decomposition
algorithm, are described in Sections 4.1–4.5, respectively.
The global parameter optimization scheme is introduced in
Section 4.6 (Figs. 5 and 6).

4.1. Column style labeling

The motivation of column style labeling is to determine
the column type based on the background features. Then
by the labels, we update the line detection results. This is a
pre-processing for our table structure understanding system.

Let A be a set of the document pages in our data set.
LetL be a label set of page column style, {double column,
single column with marginal note, single or mixed column}.
The function f: A → L associates each page of A with
a page column style. The function V : A → � speci?es
measurements made on each element ofA, where � is the
measurement space.

The page column style classi?cation problem can be for-
mulated as follows: Given a page setA and a page column
style setL, =nd a classi=cation function f:A → L, that
maximizes P(f(A)|V (A)).
We assume conditional independence between the page

column style classi?cations, so the probability in the
above equation may be decomposed as P(f(A)|V (A)) =∏

�∈A P(f(�)|V (�)). The problem can be solved by

1484 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

Input data

Table structure understanding

Detected table data Table ground truth

Performance evaluation
protocol

Performance evaluation
result

Optimization control
Parameter adjustment

Initial parameter value

initialize

Parameter value

Input data

1 2 3
4

5

6

7
98

11 10

(a) (b)

Fig. 5. (a) Diagram of global parameter optimization scheme. (b) Example of a line search method. The starting position is 1, the search
direction is right ?rst. The search direction is Sipped at 4. It keeps searching until 11.

Fig. 6. (a) Located table column entities within the table entities in image in Fig. 4. Table column and table entities are shown. (b) The
result of table understanding algorithm. Table cell and table entities are shown.

independently maximizing each individual probability
P(f(�)|V (�)) in the above equation, where �∈A. The
probabilities are estimated from the training set.

The features of V (�), are functions of the geometry of
the vertical blank block separator on the page �. There is
one vertical blank block separator on each page. A vertical
blank blockVR (see Ref. [24] for de?nition) with br rows
and bc columns and with lefttop vertex coordinate (xb1; yb1),
is a vertical blank block separator, BK= (br; bc; xb1; yb1),

if and only if it satis?es the following conditions:

• Its page normalized number of column is large enough.
Speci?cally, bc=mw¿ 3, where mw is the median width
of text glyphs in the whole page.

• It has the largest number of rows among all the blank
blocks. If there is more than one blank block having this
largest number of rows, the one with largest number of
column is selected. If there is more than one with the same

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1485

largest number of column, then one of them is randomly
selected.

We use two features for the page column style classi?er.
They are the length ratio and position ratio of the page’s
blank block separator, BK= (br; bc; xb1; yb1):

1. The length ratio, lbk=br=lvr , where lvr is the row number
of the page live-matter part.

2. Position ratio pbk = (xb1 + bc=2)=(xlv + lvc=2), where xlv
is the column coordinate of the lefttop vertex of the page
live-matter part and lvc is the number of columns of the
page live-matter part.

After we identify the column style, we make adjustments to
line and word segmentation results according to the labeled
column style.

4.2. Large horizontal blank block equivalence subsets
location

The next step of the algorithm locates all the horizon-
tal blank blocks (as de?ned in Ref. [24]) of the page and
groups them into a collection of equivalence subsets. The
foreground entities adjacent to the equivalence subsets are
the table candidates.

Let B be the set of horizontal blank blocks in a page
column. R is the set of real numbers. Function top: B → R

associates a horizontal blank block with its top y coordinate.
For a pair of horizontal blank block a and b, where a∈B

and b∈B, the horizontal distance dh(a; b) and vertical dis-
tance dv(a; b) between them are de?ned as

dh(a; b) =

xb − xa − wa if xb ¿ xa + wa;

xa − xb − wb if xa ¿ xb + wb;

0 otherwise;

(1)

dv(a; b) =

yb − ya − ha if yb ¿ya + ha;

ya − yb − hb if ya ¿yb + hb;

0 otherwise:

(2)

The horizontal overlap oh(a; b) and vertical overlap
ov(a; b) between a and b are de?ned as

oh(a; b) =

xa + wa − xb if xb ¿ xa; xb ¡ xa + wa;

xb + wb − xa if xa ¿ xb; xa ¡ xb + wb;

0 otherwise;

(3)

ov(a; b) =

ya + ha − yb if yb ¿ya; yb ¡ya + ha;

yb + hb − ya if ya ¿yb; ya ¡yb + hb;

0 otherwise:

(4)

Figs. 7(a) and (b) show examples of de?ned dh, do, oh
and ov.

We de?ne a as a low neighbor of b if top(a)¿ top(b) and
Oh(a; b)¿ 0. We de?ne a as the immediate low neighbor
of b if and only if

1. a is a low neighbor of b;
2. top(a)6 top(a′), where a′ is a low neighbor of b.

We de?ne a relation G that pairs together those horizontal
blank blocks that are vertical adjacent. De?ne G ⊂ B×B,
G={(a; b)∈B×B|a and b are vertically adjacent}. De?ne
relation G · H = {(a; c)|∃b; (a; b)∈G; (b; c)∈H}, where
G ⊂ B×B and H ⊂ B×B.
The transitive closure of GT is de?ned as GT =⋃∞
i=1 G · · ·G︸ ︷︷ ︸

i times

.

It is easy to prove that the vertically adjacent relation sat-
is?es symmetric and reSexive properties. Thus GT de?nes
a set of equivalence subsets. Two equivalence subsets are
shown in Fig. 7(c).

After we identify the large horizontal blank block equiva-
lence subsets, we can do a horizontal projection of the hori-
zontal blank block equivalence subsets. We can get diJerent
regions of the projection. The union of all the words which
horizontally overlap (oh¿ 0, oh as de?ned in Eq. (3)) with
a region becomes a table candidate.

4.3. Statistical re=nement

For the identi?ed table candidates, we do a vertical pro-
jection on the bounding boxes of the words. Because of the
table structure, we can expect the vertical projection to have
peaks and valleys. Each table column is determined by the
valley at its left and the valley at its right. The intersection of
the table columns with the rows are the table cells. Clearly,
the table candidates have many false alarms among them.
A statistical table re?nement algorithm is used to validate
each table candidate.

For each table candidate, three features are computed.

• Vertical blank block [24] area ratio, ra, taken over each
table’s area. Let t be an identi?ed table and B be the set
of large vertical blank blocks in it, ra=

∑
(∈B Area(()
Area(t) ;

• Maximum baseline diJerence mc. Denote the set of the
cells in a row i as RCi, RCi={ci;1; ci;2; : : : ; ci; im}. Denote
the set of RCi as RC, RC = {RCi ; i = 1; : : : ; m}, where
m is the number of rows in the table. Let baseline(c) be
the y coordinate of the cell entity bottom line:

mc = max
RCi∈RC

(max
ci; j∈RCi

(baseline(ci; j))

− min
ci; j∈RCi

(baseline(ci; j)))

• Column justi?cation diJerence, Ji. Denote the set
of cells in a column, i, in the table body region
CCi = {ci;1; ci;2; : : : ; ci; in}. Denote the set of CCi as CC,
CC= {CCi ; i= 1; : : : ; n}, where n is the column number
in the table. Let B = (xi; j ; yi; j ; wi; j ; hi; j) be the bounding

1486 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

dh

w

h ov

w

h

o dvh

(a) (b) (c)

Fig. 7. (a) and (b) illustrate the spatial relations between two bounding boxes that are (a) horizontally adjacent (b) vertically adjacent. (c)
Illustrates two examples of equivalence subsets of large horizontal blank blocks. Each gray area is a horizontal blank block between the
cells. The equivalence subsets are shown by the dash rectangles.

box of the cell ci; j ∈CCi, where (xi; j ; yi; j) is the left most
point coordinate, wi;j is the width of the bounding box,
and hi; j is the height of the bounding box. We estimate
the justi?cation of a column, i; i=1; : : : ; n, by computing
the vertical projection of the left, center, and right edge
of ci; j ; j = 1; : : : ; in:

Cleft[i] = maxci; j∈CCi (xi; j) − minci; j∈CCi (xi; j);

Ccenter[i] = maxci; j∈CCi (xi; j + wi;j=2) − minci; j∈CCi

(xi; j + wi;j=2);

Cright[i] = maxci; j∈CCi (xi; j+wi;j)−minci; j∈CCi (xi; j+wi;j);

Ji = min{Cleft[i]; Ccenter[i]; Cright[i]}:
The maximum diJerence of the justi?cation in a column,
mj, is computed as: mj = max(Ji); i = 1; : : : ; n.

Then we can compute the table consistent probability for
table t as

P(consistent(t)|ra(t); mc(t); mj(t)):
If P(consistent(t)|ra(t); mc(t); mj(t))¿ 0:5, we label the ta-
ble candidate as a table entity.

4.4. Iterative updating optimization

The large horizontal blank block equivalence subsets lo-
cation and statistical re?nement detect tables by consider-
ing the local and intrinsic features of table entities. It serves
as the means by which an initial starting point may be ob-
tained for the iterative updating optimization that maximizes
the probability of the whole page segmentation. That is, not
only do we need to get maximum probability on table enti-
ties, but also have to maximize the whole page segmenta-
tion probability. The whole page segmentation probability
includes the probability of table detection results, the proba-
bility of text block segmentation results and the probability
of the adjacent relationships between table entities and text
block entities. Based on this idea, we formulate the table de-
tection problem as a labeling and partitioning problem. The

goal of the problem is to ?nd an optimal solution to label
and partition table and text block entities in a given page.

The remainder of the section is organized as follows. We
give the problem statement in Section 4.4.1. The probability
estimation is stated in Section 4.4.2. We present our algo-
rithm details in Section 4.4.3.

4.4.1. Problem statement
Let A be a set of segmented zone entities. Let L

be a set of content labels, {table, text-block}. Function
f: A → L assigns each element of A with a label.
Function V : ˝(A) → � computes measurements made on
subset of A, where � is the measurement space.
We de?ne a probability of labeling and measurement

function as

P(V (�): �∈A; f|A) = P(V (�): �∈A|f;A)P(f|A): (5)

By making the assumption of conditional independence
that when the label f�; �∈A is known, no knowledge of
other labels will alter the probability of V (�), we can de-
compose the probability in Eq. (5) into

P(V (�): �∈A|f;A) =
∏
�∈A

P(V (�)|f;A)

︸ ︷︷ ︸
(a)

P(f|A)︸ ︷︷ ︸
(b)

: (6)

Expression (a) in Eq. (6) can be computed by applying
diJerent measurement functions VTAB and VTXT according to
f function values, table or text-block, where VTAB is used
for tables and VTXT is used for text-blocks:

P(V (�): �∈A|f;A) =
�∈A∏

f�=table

P(VTAB(�)|f;A)

×
�∈A∏

f�=text-block
P(VTXT (�)|f;A)P(f|A): (7)

To compute expression (b) in Eq. (6), we consider the dis-
continuity property between neighbors to two zone entities
with diJerent labels. LetA= {A1; A2; : : : ; AM} be the set of
document elements extracted from a document page. Each
element Ai ∈A is represented by a bounding box (x; y; w; h),
where (x; y) is the coordinate of the top-left corner, and w

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1487

and h are the width and height of the bounding box, respec-
tively. The spatial relations between two adjacent boxes are
shown in Figs. 7(a) and (b).

The neighbor set is de?ned as

N= {(va; vb)|va and vb horizontally or vertically adjacent;

×va ∈V; vb ∈V}:
Assuming the conditional independence between each

neighborhood relationship, expression (b) in Eq. (6) can be
computed as

P(f|A) =
∏

{p;q}∈N
P{p;q}(fp; fq|p; q); (8)

where P{p;q}(fp; fq|p; q) has the property

P{p;q}(fp; fq|p; q) =
{
P{p;q}(fp; fq|p; q); fp = fq;

0; fp = fq:
(9)

Eq. (7) can be written as

P(V (�): �∈A|f;A) =
�∈A∏

f�=table

P(VTAB(�)|f;A)

×
�∈A∏

f�=text-block
P(VTXT (�)|f;A)

×
∏

{p;q}∈N
P(fp; fq|p; q): (10)

The iterative updating optimization problem can be for-
mulated as follows: Given initial setA0, =nd a new setAs

and a labeling function fs: As → L, that maximizes the
probability:

P(V (�): �∈As|fs;As) =
�∈As∏
fs�=table

P(VTAB(�)|fs;As)

×
�∈As∏

fs�=text-block
P(VTXT (�)|fs;As)

×
∏

{p;q}∈N
P(fsp; f

s
q|p; q): (11)

Our goal is to maximize the probability in Eq. (10) by
iteratively updating Ak and fk . Our iterative updating op-
timization system works as follows: we take the statistical
re?nement results as the preliminary table detection results
and use some existing text block segmentation algorithm to
get text blocks [21]. Then we systematically adjust the la-
beling to maximize the probability until no further improve-
ment can be made.

4.4.2. Probability estimation
1. Table and text separator probability. Given a table,

t, and its vertically adjacent neighboring text block B, we

compute the probability of the separator between them being
a table and text separator as

P(ft; fB|t; B) = P(TableTextSeparator|oh(t; B); dv(t; B));
where the de?nitions of dv(t; B) and oh(t; B) can be found
at Eqs. (2) and (3).

2. Table measurement probability. To facilitate table de-
tection, we applied our table decomposition algorithm (Sec-
tion 4.5) on each detected table. Based on the table decom-
position results, three features are computed. These features
are given below:

• Ratio of total large vertical blank block [24] and large
horizontal blank block [24] areas over identi?ed table
area. Let t be an identi?ed table and B be the set of
large horizontal and vertical blank blocks and in it, ra=∑

(∈B Area(()=Area(t).
• Maximum diJerence of the cell baselines in a row.

Denote the set of the cells in a row i as RCi,
RCi = {ci;1; ci;2; : : : ; ci; im}. Denote the set of RCi
as RC, RC = {RCi ; i = 1; : : : ; m}, where m is
the row number in the table. Let baseline(c) be
the y coordinate of the cell entity bottom line,
mc=maxRCi∈RC(mzxci; j∈RCi (baseline(ci; j))−minci; j∈RCi
(baseline(ci; j)));

• Accumulated diJerence of the justi?cation in all columns.
Denote the set of cells in a column, i, in the table CCi =
{ci;1; ci;2; : : : ; ci; in}. Denote the set of CCi as CC, CC =
{CCi ; i = 1; : : : ; n}, where n is the column number in the
table. Let (xi; j ; yi; j ; wi; j ; hi; j) represent the bounding box
of the cell ci; j ∈CCi. We estimate the justi?cation of a
column, i; i=1; : : : ; n, by computing the vertical projection
of the left, center, and right edge of ci; j ; j = 1; : : : ; in:

Cleft[i] = max
ci; j∈CCi

(xi; j) − min
ci; j∈CCi

(xi; j);

Ccenter[i] = max
ci; j∈CCi

(xi; j + wi;j=2) − min
ci; j∈CCi

(xi; j + wi;j=2);

Cright[i] = max
ci; j∈CCi

(xi; j + wi;j) − min
ci; j∈CCi

(xi; j + wi;j);

Ji = min{Cleft[i]; Ccenter[i]; Cright[i]}:
The accumulated diJerence of the justi?cation in all
columns, mj, is computed as: mj =

∑n
i=1 Ji.

Finally, we can compute the table consistent probability
for table t as

P(VTAB(t)) = P(consistent(t)|ra(t); mc(t); mj(t)):
3. Text block measurement probability. A text block, in

general, has a homogeneous inter-line spacing and a align-
ment type (such as left-justi?ed, etc.) Given a detected text
block B, we compute the probability that B has homogeneous
inter-line spacing, and a text alignment type. As in Liang et
al. [23], we compute text block measurement probability as

P(VTXT (B)) = P(VTXT (B)|Leading(B); Alignment(B)):

1488 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

By making the assumption of conditional independence, we
can rewrite the above equation as

P(VTXT (B)) = P(VTXT (B)|Leading(B)P(VTXT (B)|
Alignment(B)):

Let B = (l1; : : : ; ln) be an extracted block. DB = (d(1);
d(2); : : : ; d(n − 1)) is a sequence of inter-line space dis-
tances, where d(j) is the space distance between lj and lj+1.
We compute the median and the maximum value of the el-
ements of DB. The probability is

P(VTXT (B)|Leading(B)) = P(median(DB); max(DB)|
Leading(B)):

Given a text block B that consists of a group of text lines
B= (l1; l2; : : : ; ln), we determine the text alignment of B by
observing the alignment of the text line edges. Let eli be the
left edge of the text line li and let eci and eri be the center
and right edges of the line box, respectively. Let El be the
left edges of text line 2 to n, such that El= {eli|26 i6 n}.
Ec is the center edges of text line 2 to n − 1, and Er is the
right edges of text line 1 to n − 1. We ?rst estimate the
median of El, then compute the absolute deviation Dl of the
elements of El from its median:

Dl = {di|di = |eli − median(El)|; 26 i6 n}:
Similarly, we estimate the absolute deviation of the center
edges and right edges: Dc and Dr . Then, we compute the
probability of B being left, center, right, or both justi?ed by
observing the mean absolute deviation of the left, center and
right edges:

P(VTXT (B)|Alignment(B)) = P(mean(Dl); mean(Dc);

×mean(Dr)|Alignment(B)): (12)

4.4.3. Iterative updating optimization algorithm
Fig. 8 shows a block diagram of our algorithm. Given a

labeled page, ?rst we estimate its segmentation probability.
For each table, we consider several adjustments, which are
to keep it as a table, to grow the table to include its upper and
lower neighbors, to merge the table with its upper and lower
neighbors and label it as text block. For each adjustment,
we compute the new probability. We select the adjustment
which produces the biggest improvement upon the initial
page segmentation probability. This process is repeated until
no improvement can be made. The details of the algorithm
are described below.

Algorithm 4.1. Iterative updating optimization.

1. The input data to the algorithm are table statistical re?ne-
ment algorithm result and text block segmentation results
[23]. They are a set of block entities, A0 and function
f0:A0 → L.

2. Set k = 0.
3. For each hypothesized table, i, i = 1; : : : ; N , where N is

the number of tables in Ak . Compute the diJerent prob-
abilities under diJerent adjustments:
• Keep the table. Compute the probability P(i;1) follow-

ing Eq. (10).
• Merge table i with its upper text neighbor and label

it as a new table. Compute the new probability P(i;2)

following Eq. (10).
• Merge table i with its upper text neighbor and label

it as a new text block. Compute the new probability
P(i;3) following Eq. (10).

• Merge table i with its lower text neighbor and label
it as a new table. Compute the new probability P(i;4)

following Eq. (10).
• Merge table i with its lower text neighbor and label

it as a new text block. Compute the new probability
P(i;5) following Eq. (10).

4. Compute Pmax =max(P(i; j)); i = 1; : : : ; N; j = 1; : : : ; 5 and
get its appropriate adjustment action.

5. If the action is to keep the table, then, return the labeling
result Ak as As and stop the algorithm.

6. If the action is not to keep the table, then take the adjust-
ment action and we get Ak+1 and fk+1: Ak+1 → L.

7. Set k = k + 1 and go back to 3.

4.5. Table decomposition algorithm

According to our experience and other researcher’s report
[12], it is extremely di>cult to detect table headers using
only geometric information without lexical criteria. The goal
of our table decomposition algorithm is to decompose the
detected table zones into cell structures using only geometric
information.

Similar to the recursive X–Y cut in [22], we do a vertical
projection on the word level in each identi?ed table. Because
of the table structure, we can expect the projection result
to have peaks and valleys after binarization of projection
result. We can separate each table column which starts from
a valley and ends at the next valley. Fig. 6(a) shows the
table columns we get on the image shown in Fig. 4. After we
construct the table columns, we can get cell structures and
their attributes such as starting/ending row, starting/ending
column. In Fig. 6(b), we show an example output from the
table structure understanding algorithm.

4.6. Global parameter optimization scheme

Fig. 3 shows the steps of the table understanding algo-
rithm. Each step has some tuning parameters. Fig. 9 shows
the input, output structures and the tuning parameters used
for each step. The parameter values are ?rst estimated lo-
cally and then these locally estimated values are used as
the initial value in a global parameter optimization for the
whole procedure.

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1489

Preliminary Table
Detection Results

Updated table
detection results

Compute the whole
page probability

For each table, compute the
probability to grow it to

include upper or lower as
a new table entity. part as new text block

For each table, compute the
probability to grow it to
include upper or lower

the probability to keep it
For each table, compute

as a table.

Select the best probability
improvement

Converge ? N

Terminate

Y

Adjust labeling function

Fig. 8. Overview of the iterative updating optimization algorithm.

Text Block Segmentation

Updated
column

Updated
region

Updated
word

Updated
line

Updated
tablezone

column
Updated

region
Updated

wordline
Updated

tablezone
Text block

Updated
column

Updated
region

Updated
word

Updated
line

UpdatedUpdated

Table Decomposition

Updated
column

Updated
region

Updated
word

Updated
line

Updated
tablezone

Iterative Updating Optimization

paragraph

Interval bounding of probability
lookup tables for
•Table measurement probability
•Text block measurement
probability

•
•

Table text separator probability•

Updated
column

Updated
region

Updated
word

Updated
line

Updated
tablezone

paragraph
word

Updated
tablezone

length

•Divider for binarization of
The vertical projection result
•Morphological closing unit

Column style labeling

column wordline

Updated Updated
region

Updated
word

Updated
line

Large horizontal blank block
equivalence subsets locator

Updated
column

Updated
region

Updated
word

Updated
line

tablezone

•Width threshold for
blank separator
•Interval bounding for
column style labeling
probability lookup table

•Width threshold for large
horizontal blank block
• horizontally overlapping
threshold
• vertically overlapping
threshold
• Vertical distance between
large horizontal blank block
(implicitly used)

column wordlinecolumn wordline

column
Updated

line

Updated
column

Updated
region

Updated
line

tablezone

•Width threshold for
blank separator
•Interval bounding for
column style labeling
probability lookup table

•Width threshold for large
horizontal blank block
• horizontally overlapping
threshold
• vertically overlapping
threshold
• Vertical distance between
large horizontal blank block
(implicitly used)

Statistical Refinement

Probability ratio for decision
making

•Height threshold for
Large vertical blank blocks
•Interval bounding for
statistical refinement
probability lookup table
••

region

Fig. 9. Details of table understanding algorithm. For each step, its input/output data structures and the parameters used are shown. The
global parameter optimization scheme is designed to optimize these parameters.

Fig. 5(a) shows the diagram of the global parameter op-
timization scheme. First, the tuning parameter set is initial-
ized by the initial parameter values. We use the performance
evaluation protocol presented in Section 6 to evaluate the
function value with the given parameter set. An independent
optimization control module reads the tuning parameter set
and its performance. Then it uses an optimization method to
adjust the parameter values to maximize the performance.
The performance criteria we used is the fraction of ground
truth cells that are correctly identi?ed plus the fraction of the
detected cells that are correctly identi?ed, the fraction being
with respect to the whole data set. There are various opti-
mization methods that could be used, such as golden section
search in one dimension [25], line search in one dimension,
or conjugate gradient methods in multidimensions [25], etc.

Below we will give a brief introduction to the line search in
one dimension which is what we used.

Given an initial point, a direction in a given dimension,
and an initial step interval, the line search method starts
searching with the initial step interval. As long as the func-
tion increases in value, the step size doubles for each trial.
If the function value decreases, the pass terminates, the di-
rection is Sipped and the new step size is changed to the ini-
tial step size. The interval between the pass starting position
and the Sipping position of the pass is a search region for
the pass. This procedure repeats until the number of trials
exceeds some threshold or the search region length is equal
to the initial step size. Fig. 5(b) shows a working example
of the algorithm. It starts the search at position 1. The ini-
tial search direction is right. It Sips directions at positions

1490 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

4, 7, 9, 11. It stops at 11. The maximum function value is
taken at position 10. For an N -dimensional optimization,
this line search cycle through all dimensions until there are
no changes.

5. Automatic table ground truth generation

We developed a software package that can analyze any
given set of table ground truth data and estimate the mean
and variance of all the parameters required to synthesize
similar kinds of tables. Given the parameter values, the soft-
ware can synthesize pseudo-random tables and their ground
truth. Automatic ground truthing of generated tables is fa-
cilitated by making table contents unique in each given
document image so that the table structure can be deter-
mined by content matching. We demonstrated the feasibil-
ity of our algorithm on a real image data set and used the
synthetic table data to aid our table structure understand-
ing research. The software package is publicly available
at Ref. [26].

5.1. Table ground truth speci=cation

We de?ne the table structure in a hierarchical structure,
as shown in Fig. 2(b). In the table ground truth, we need
specify the hierarchical structure between table, row/column
header, table body and cell entities. For each cell, the fol-
lowing attributes have to be recorded: (1) starting/ending
row, sr and er; (2) starting/ending column, sc and ec; (3)
justi?cation, cj. Its possible values are left, center, right and
decimal.

Note that although we do not explicitly describe row and
column structures, such information can be readily obtained
by examining cell attributes. As explained in the next sec-
tion, the table hierarchical structure and its cell attributes
are automatically generated by our table ground truth gen-
eration tool.

5.2. Automatic table ground truth generation

Fig. 10(a) shows the diagram of the system and Fig.
10(b) an example of the automatic table ground truth gen-
eration results. The following parts describe the automatic
table ground truth generation procedure.

5.2.1. Parameter generator
This software is used to analyze a given table ground truth

or non-table ground truth. Two kinds of parameter sets, T
andN, are designed. There are 12 table layout parameters
in T, e.g. column justi?cation, spanning cell position, etc.
There are three non-table layout parameters inN, e.g. text
column number, if there are marginal notes, etc. Clearly,
T is designed to add more variety to table instances and
test the mis-detection performance of any table detection
algorithm. N is designed to add more variety to non-table

instances and test the false alarm performance of any table
detection algorithm. Currently, the part which automatically
estimates non-table parameters has not been implemented,
so we enclose them in dashed lines in Fig. 10(a). The table
parameter set and non-table parameter set de?nitions can be
found in Ref. [20].

5.2.2. Table latex =le generation tool
This software randomly selects two parameter elements

from sets T and N. The resulting parameter for a page
is a reasonable element in T ×N. We pre-computed two
content sets C,P. They are cell word set and non-table plain
text set. Elements of C are random, meaningless English
character strings. Elements ofP are the text ground truth ?le
from UW CDROM III [17]. Sets C, P are the contents of

table entities and non-table entities in the generated LATEX
[27] ?les, respectively. We make sure every element in C
is unique in both C and P and it can only be used once for

a given ?le. This software writes out two ?les: a LATEX ?le
and a partial ground truth ?le. In the partial ground truth ?le,
there are table, row header, column header and cell entities
with their content and attributes such as cell starting/ending
column number, etc.

5.2.3. DAFS =le generation tools
Several software tools are used and some minimum man-

ual work is required in this step. LATEX produces DVI ?les.
The DVI2TIFF software [28] converts DVI ?le to a TIFF
?le and a so-called character ground truth ?le which con-
tains the bounding box coordinates, the type and size of the
font, and the ASCII code for every individual character in
the image. The CHARTRU2DAFS software [26] combines
each TIFF ?le and its character ground truth ?le and con-
verts it to a DAFS ?le [29]. The DAFS ?le has content
ground truth for every glyph, which is the basis of con-
tent matching in the next step. Then line segmentation and
word segmentation software [30,31] segments word entities
from DAFS ?le. Since we cannot guarantee a 100% word
segmentation accuracy, a minimum of manual work using
Illuminator [32] tool is required to ?x any incorrect word
segmentation results inside tables.

5.2.4. Table ground truth generator
Since we know every word in the tables appears once,

we can use a content matching method to locate any table
related entity of interest. Our software locates each unique
word from the partial ground truth ?le in the DAFS ?le. If
this cannot be done, an error is reported. Here is the way to
make the previous step even simpler. We only need to run
the table ground truth generator twice. The only places we
need look at are the ?les with some errors in the ?rst run.
After the correction, we run this software again to obtain
the ?nal table ground truth data.

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1491

table latex file
generation tool

Parameter
Generator

Nontable
plain text
Nontable

Software
tool

DAFS file

Latex file

truth

Partial

Ground

File

parameter
set

Table
parameter

setsetset

Cell word

Table groundtruth generator

validation

Table groundtruth

Table groundtruth

Nontable
Ground Truth Ground Truth

Table

(a) (b)

Fig. 10. (a) Illustrates automatic table ground truth generation procedure; (b) illustrates an example of generated table page.

5.2.5. Table ground truth validation
For normal ground truthing work, validation is a required

step to make sure that we have correct ground truth. Our
table ground truth validation is also automatically done. It
checks the geometric relations among table, row, column
and cell entities. If there is any discrepancy, the page can
be either removed or given for further manual checking.

6. Table structure understanding performance evaluation

We can view the table structure understanding evaluation
problem as three correspondence problems between the
detection results and ground truth in the three diJerent sets,
�1; �2; �3, where �1={RLS rectangle areas whose Q value
is table},�2={RLS rectangle areas whoseQ values are row
header; column header or table body}, and �3 = {RLS
rectangle areas whose Q value is cell}.

Suppose we are given two sets G= {G1; G2; : : : ; GM} for
ground truthed foreground table related entities, e.g. cell
entities in �3, and D = {D1; D2; : : : ; DN} for detected table
related entities. The algorithm performance evaluation can
be done by solving the correspondence problem between the
two sets. Performance metrics developed in Ref. [30] can be
directly computed in each rectangular layout structure set.
Any detection errors such as table/cell misdetections, false
alarms, splitting errors and merging errors can be reported

by studying the metrics. In particular, the correspondence
problem in set �1 is the evaluation of the table identi?cation
algorithm, and those in sets �2 and �3 are the evaluation of
table decomposition algorithm. The total cost of the table
structure understanding process can be calculated by the
linear combination of the costs in three sets:

Cost =W�1 Cost�1 +W�2 Cost�2 +W�3 Cost�3 ;

whereW�1 ; W�2 andW�3 are weights for the three evaluation
costs.

For our table structure understanding algorithm, our ?nal
goal is to extract tables from document pages and decom-
pose into diJerent cell entities. So our table structure un-
derstanding performance evaluation is done in �3. Most of
the published table structure understanding algorithms focus
on the table detection problem. To compare our algorithms
with these algorithms, we also did performance evaluation
on the �1 level.

7. Experimental results

Our testing data set has 1125 document pages. All of
them are machine printed, noise free data. Among them, 565
pages are real data from diJerent business and law books.
Another 550 pages are synthetic data generated using the
method described in Section 5. From the real document im-
ages, we used our software package to estimate the table

1492 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

Table 1
Cell level performance of the statistical optimization table structure understanding algorithm on real data set and whole data set

Total Correct Splitting Merging Mis-false Spurious

Real data set Ground truth 679 657 3 15 4 0
(96.76%) (0.44%) (2.21%) (0.59%) (0.00%)

Detected 700 657 6 7 30 0
(93.86%) (0.86%) (1.00%) (4.29%) (0.00%)

Whole data set Ground truth 10934 10461 132 45 296 0
(95.67%) (1.21%) (0.41%) (2.71%) (0.00%)

Detected 10779 10461 264 18 36 0
(97.05%) (2.45%) (0.17%) (0.33%) (0.00%)

Fig. 11. Illustrates the table structure understanding results: (a) and (b) correct results; (c) and (d) failed results.

parameters from seven types of tables. The parameter ?les
we used in this experiment can be obtained at Ref. [26]. A
hold-out cross validation experiment [33] was conducted on
all the data with N = 9. Discrete lookup tables were used
to represent the estimated joint and conditional probabilities
used at each of the algorithm decision steps. The perfor-
mance evaluation was done using the protocol in Section 6.

7.1. Statistical optimization algorithm experimental
results on �3 level

The numbers and percentages of miss, false, correct, split-
ting, merging and spurious detections on real data set and on
the whole data set are shown in Table 1. Here the tuning pa-
rameters take the local maximum values before we apply the
global parameter optimization scheme. The performance on
the real data set was 0:9676+0:9386=1:9062 and the perfor-
mance on the whole data set was 0:9600+0:9695=1:9295.

Fig. 11 shows a few table structure understanding exam-
ples. Figs. 11(a) and (b) are two correct results. Fig. 11(a)

shows a correct text block segmentation result. Fig. 11(b)
shows a correct table detection and decomposition result.
Figs. 11(c) and (d) illustrates some failed examples. Fig.
11(c) shows a false alarm example. Some texts in a ?gure
are detected as a table entity. Fig. 11(d) shows an error ex-
ample where our table decomposition algorithm failed.

7.2. Statistical optimization algorithm with local
maximum line search experimental results on �3 level

To verify if the tuning parameter value used in the previ-
ous section is on the local maximum point, we applied the
global parameter optimization scheme (Section 4.6) to do
the line search on the tuning parameter values. Using our
cross validation method, each time, eight nineth partitions
are used as a training data set. Given a training data set, we
sequentially used the global parameter optimization scheme
to do the line search on each dimension to ?nd a new local
maximum point. Then we used this parameter set to test on
the last one nineth data set. The whole experimental results

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1493

Table 2
Cell level performance of the statistical optimization table structure understanding algorithm with line search on real data set and whole
data set

Total Correct Splitting Merging Mis-false Spurious

Real data set Ground truth 679 657 3 15 4 0
(96.76%) (0.44%) (2.21%) (0.59%) (0.00%)

Detected 698 657 6 7 28 0
(94.13%) (0.86%) (1.00%) (4.01%) (0.00%)

Whole data set Ground truth 10934 10497 117 123 197 0
(96.00%) (1.07%) (1.12%) (1.80%) (0.00%)

Detected 10827 10497 234 54 42 0
(96.95%) (2.16%) (0.50%) (0.39%) (0.00%)

Table 3
Hu et al.’s dynamic programming based table extraction algorithm [10] performance results on whole image data set performance evaluation
result on the table level

Total Correct Splitting Merging Mis-false Spurious

Real data set Ground truth 36 32 0 2 2 0
(88.89%) (0.00%) (5.56%) (5.56%) (0.00%)

Detected 148 32 0 1 115 0
(21.62%) (0.00%) (0.68%) (77.70%) (0.00%)

Synthetic data set Ground truth 480 420 51 2 7 0
(87.50%) (10.62%) (0.42%) (1.46%) (0.00%)

Detected 545 420 104 1 20 0
(77.06%) (19.08%) (0.18%) (3.67%) (0.00%)

Whole data set Ground truth 516 452 51 4 9 0
(87.60%) (9.9%) (0.78%) (1.74%) (0.00%)

Detected 693 452 104 2 135 0
(65.22%) (15%) (0.29%) (19.48%) (0.00%)

are shown in Table 2. Comparing Tables 1 and 2, we will
see the line search results are a little better but there is no
signi?cant diJerence. For example, in the whole data set,
the line search results have smaller mis-detection rate but a
large false alarm rate. The performance on the real data set
was 0:9676 + 0:9413 = 1:9089 and on the whole data set
was 0:9567 + 0:9705 = 1:9272.

The line search of course resulted in an improvement of
performance on the training set side. The numbers reported
in the results are on the testing set side. So although these
was an overall improvement on the training side, there was
not an overall improvement on the testing side (1.9295 be-
fore line search and 1.9272 after line search). This suggests
that the initial parameter set values were most probably set
close to the optimal values.

7.3. Table detection result comparison

Most of table structure understanding research focused
on the table detection problem [9–11]. The output of their

algorithms are detected table regions. To compare our ta-
ble detection algorithm, we also did table detection perfor-
mance evaluation on table level (�1 level in Fig. 2(b)).
We implemented the algorithm of Hu et al. [10]. Their per-
formance evaluation results on our data set are shown in
Table 3. The performance evaluation results of the automa-
ton algorithm [34] are reported in Table 4. Both algorithms
take detected column and word structure as the input. We
manually generated the column ground truth in our data set.
The column and detected word structures are used as the
input of their algorithms. The performance evaluation re-
sults of our statistical optimization algorithm are reported in
Table 5. Since our performance evaluation is very strict,
the result is counted as a correct detection only when the
detected result is totally matched the ground truth data.
If the detected table has one more or less row/column, our
performance evaluation algorithm counts it as incorrect.

The best performance results of three algorithms were
88.89% (Hu et al.’s dynamic programming algorithm),
82.71% (Wasserman et al.’s automaton algorithm), and

1494 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

Table 4
Wasserman et al.’s automaton based table extraction algorithm [34] performance results on whole image data set performance evaluation
result on the table level

Total Correct Splitting Merging Mis-false Spurious

Real data set Ground truth 36 21 5 2 8 0
(58.33%) (13.89%) (5.56%) (22.22%) (0.00%)

Detected 53 21 12 1 19 0
(39.62%) (22.64%) (1.89%) (35.85%) (0.00%)

Synthetic data set Ground truth 480 397 54 0 29 0
(82.71%) (11.25%) (0.00%) (6.04%) (0.00%)

Detected 519 397 109 0 13 0
(76.49%) (21.00%) (0.00%) (2.50%) (0.00%)

Whole data set Ground truth 516 418 59 2 37 0
(81.00%) (11.43%) (0.39%) (7.17%) (0.00%)

Detected 572 418 121 1 32 0
(73.08%) (21.15%) (0.17%) (5.59%) (0.00%)

Table 5
The optimization based table extraction algorithm performance results on whole image data set performance evaluation result on the table
level

Total Correct Splitting Merging Mis-false Spurious

Real data set Ground truth 36 32 0 4 0 0
(88.89%) (0.00%) (11.11%) (0.00%) (0.00%)

Detected 38 32 0 2 4 0
(84.21%) (0.00%) (5.26%) (10.53%) (0.00%)

Synthetic data set Ground truth 480 469 4 0 7 0
(97.71%) (0.83%) (0.00%) (1.46%) (0.00%)

Detected 477 469 8 0 0 0
(98.32%) (1.68%) (0.00%) (0.00%) (0.00%)

Whole data set Ground truth 516 501 4 4 7 0
(97.09%) (0.78%) (0.78%) (1.36%) (0.00%)

Detected 515 501 8 2 4 0
(97.28%) (1.55%) (0.39%) (0.78%) (0.00%)

Fig. 12. (a) and (b) failed table detection results due to the limited table simulation ability of automatic table groundtruth generation.

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1495

Table 6
A proposal to generalize this framework to math detection problem

Step description Math detection Table detection

Coarse detection Special symbol detection Large horizontal blank block
equivalence subsets location

Statistical re?nement Math structure statistical study Table structure statistical study
Iterative updating Text/math measurement/separator Text/table measurement/separator
optimization probabilities probabilities
Global parameter Applicable Applicable
optimization scheme

98.32% (our algorithm). On the whole data set, the per-
formance of Hu et al.’s dynamic programming algorithm
[10] was 0:8760 + 0:6522 = 1:5282 and the performance
of Wasserman et al.’s automaton algorithm [34] was
0:8100 + 0:7308 = 1:5408. The performance of our algo-
rithm was 0:9709 + 0:9728 = 1:9437. From the results,
we can see our algorithm results are better than the other
two algorithms because our algorithm has more statistical
validation modules. Considering the diJerent input data,
the other two algorithms took perfect column structure as
the input while our algorithm’s took previously segmented
column structure, which could have many errors, as the
input. It also demonstrated our algorithm is more robust
and could easily be integrated into any practical document
layout analysis system.

Another observation is that the performance on the syn-
thetic data set and on the real data set are diJerent. The rea-
son is that although the synthetic data set has a similar table
structure to the real data set, the non-table parts are still a
little diJerent. Figs. 12(a) and (b) show two failed cases. In
Fig. 12(a), the false alarm is due to the text on the graph-
ics. In Fig. 12(b), the merging error is due to two adjacent
table entities. These cases are not simulated in the synthetic
data set. This partially explains why there is a small dif-
ference between the results from synthetic data set and real
data set.

8. Conclusion and future work

In this paper, we formulated the table structure under-
standing problem in the whole page segmentation frame-
work. We presented a statistical based table structure under-
standing algorithm using optimization methods. We showed
that an algorithm designed to locally maximize table detec-
tion is not satisfactory. We improved the table detection re-
sult by optimizing the whole page segmentation probability,
including table entities and text block entities.

Some turning parameters are used in our algorithm. In-
stead of ?xing these parameters, we determined the tuning
parameter values on the Sy with our performance evalua-
tion protocol and some maximum function method. A novel

automatic table ground truth generation system which can
e>ciently generate a large amount of accurate table ground
truth suitable for the development of table detection algo-
rithms was discussed. We implemented our algorithm and
tested on a data set which included 1125 document pages
with 10,934 table cell entities. Among them, 565 pages were
real data from diJerent business and law books. Another
560 pages were synthetic data.

As shown in Fig. 11(d), our current table decomposition
result can be further re?ned by a statistically based table de-
composition algorithm. Finally, the framework proposed in
this paper is very general. It has the potential to be applied
to other page segmentation problems, such as text/math
and text/?gure segmentation problems. Table 6 shows
some ideas to generalize this framework to math detection
problem.

9. Summary

With the large number of existing documents and the in-
creasing speed in the production of new documents, ?nding
e>cient methods to process these documents for their con-
tent retrieval and storage becomes critical. Tables are a pop-
ular and e>cient document element type. Therefore, table
structure understanding is an important problem in the docu-
ment layout analysis ?eld. This paper presents a table struc-
ture understanding algorithm using optimization methods.
It includes steps of column style labeling, large horizontal
blank block equivalence subsets location, statistical re?ne-
ment, iterative updating optimization and table decomposi-
tion. The column style labeling, statistical re?nement and
iterative updating optimization steps are probability based,
where the probabilities are estimated from geometric mea-
surements made on the various entities with which the al-
gorithm works in a large training set.

Each step of our table structure understanding algorithm
has some tuning parameters. We initially set the parameters
with some conjectural values. Then with a global parameter
optimization scheme, we update these values using a line
search optimization algorithm. We use a performance evalu-
ation protocol employing an area overlapping measure. With

1496 Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497

this scheme, we can obtain statistically satisfactory tuning
parameter values on the Sy.

Large data sets with ground truth are essential in assess-
ing the performance of a computer vision algorithm. Man-
ually generating document ground truth proved to be very
costly and prone to involve subjective errors. We address
this problem by using an automatic table ground truth gen-
eration system which can e>ciently generate a large amount
of accurate ground truth suitable for the development of ta-
ble structure understanding algorithms. This software pack-
age is publicly available.

The training and testing data set for the algorithm include
1125 document pages having 518 table entities and a total of
10,934 cell entities. The algorithm performed at the 96.76%
accuracy rate on the cell level and 98.32% accuracy rate on
the table level. We implemented and tested two other pub-
lished table structure understanding algorithms. In the same
data set, with the perfect column structure as the input, the
other two algorithms performed at the 88.89% and 82.71%
accuracy rate on the table level. Comparing with them, our
algorithm demonstrated a favorable result.

References

[1] T. Watanabe, Q. Luo, N. Sugie, Layout recognition of
multi-kinds of table-form documents, IEEE Trans. Pattern
Anal. Mach. Intell. 17 (4) (1995) 432–445.

[2] B. Yu, A.K. Jain, A generic system for form dropout, IEEE
Trans. Pattern Anal. Mach. Intell. 18 (11) (1996) 1127–1134.

[3] F. Cesarini, M. Gori, S. Marinai, G. Soda, Informys: a Sexible
invoice-like form-reader system, IEEE Trans. Pattern Anal.
Mach. Intell. 20 (7) (1998) 690–706.

[4] S. Chandran, R. Kasturi, Structural recognition of tabulated
data, in: Proceedings of International Conference on Advances
in Pattern Recognition (ICAPR) 93, Tsukuba Science City,
Japan, October 1993, pp. 516–519.

[5] E. Green, M. Krishnamoorthy, Model-based analysis of
printed tables, in: Proceedings of the Third ICDAR, Canada,
August 1995, pp. 214–217.

[6] J.H. Shamilian, H.S. Baird, T.L. Wood, A retargetable table
reader, in: Proceedings of the Fourth ICDAR, Germany,
August 1997, pp. 158–163.

[7] K. Zuyev, Table image segmentation, in: Proceedings of
the International Conference on Document Analysis and
Recognition (ICDAR) ’97, Ulm, Germany, August 1997, pp.
705–708.

[8] T.G. Kieninger, Table structure recognition based on robust
block segmentation, Document Recognition V, January 1998,
pp. 22–32.

[9] T. Kieninger, A. Dengel, Applying the t-rec table
recognition system to the business letter domain, in:
Sixth International Conference on Document Analysis and
Recognition (ICDAR01), Seattle, WA, September 2001, pp.
518–522.

[10] J. Hu, R. Kashi, D. Lopresti, G. Wilfong, Medium-independent
table detection, in: SPIE Document Recognition and Retrieval
VII, San Jose, CA, January 2000, pp. 291–302.

[11] B. Klein, S. Gokkus, T. Kieninger, A. Dengel, Three
approaches to “industrial” table spotting, in: Sixth
International Conference on Document Analysis and
Recognition (ICDAR01), Seattle, WA, September 2001, pp.
513–517.

[12] J. Hu, R. Kashi, D. Lopresti, G. Wilfong, Table structure
recognition and its evaluation, in: SPIE Document Recognition
and Retrieval VIII, San Jose, CA, January 2001.

[13] J.C. Handley, Table analysis for multi-line cell identi?cation,
in: SPIE Document Recognition and Retrieval VIII, San Jose,
CA, January 2001.

[14] J. Hu, R. Kashi, D. Lopresti, G. Wilfong, Evaluating the
performance of table processing algorithms, Int. J. Document
Anal. Recogn. 4 (3) (2002) 140–153.

[15] J. Hu, R. Kashi, D. Lopresti, G. Nagy, G. Wilfong,
Why table ground-truthing is hard, in: Proceedings of
the Sixth International Conference on Document Analysis
and Recognition, Seattle WA, USA, September 2001, pp.
129–133.

[16] I. Phillips, S. Chen, R. Haralick, Cd-rom document database
standard, in: Proceedings of the Second International
Conference on Document Analysis and Recognition, Tsukuba
Science City, Japan, October 1993, pp. 478–483.

[17] I. Phillips, Users’ Reference Manual, CD-ROM, UW-III
Document Image Database-III, 1995.

[18] Y. Wang, I.T. Phillips, R. Haralick, Automatic table ground
truth generation and a background-analysis-based table
structure extraction method, in: Sixth International Conference
on Document Analysis and Recognition (ICDAR01), Seattle,
WA, September 2001, pp. 528–532.

[19] G. Liu, R.M. Haralick, Flir atr using location uncertainty, J.
Electron. Imaging 9 (2000) 178–193.

[20] Y. Wang, Document analysis: table structure understanding
and zone content classi?cation, Ph.D. Thesis, University of
Washington, Seattle, WA, 2002.

[21] J. Liang, R. Rogers, R.M. Haralick, I.T. Phillips,
Uw-isl document image analysis toolbox: an experimental
environment, in: Proceedings of the International Conference
on Document Analysis and Recognition (ICDAR) ’97, Ulm,
Germany, August 1997, pp. 984–988.

[22] J. Ha, I.T. Phillips, R.M. Haralick, Recursive x–y cut using
bounding boxes of connected components, in: Proceedings of
the Second International Conference on Document Analysis
and Recognition, Tsukuba, Japan, October 1993, pp. 952–955.

[23] J. Liang, I.T. Phillips, R.M. Haralick, Consistent partition
and labeling of text blocks, J. Pattern Anal. Appl. 3 (2000)
196–208.

[24] Y. Wang, R. Haralick, I.T. Phillips, Improvement of zone
content classi?cation by using background analysis, in: Fourth
IAPR International Workshop on Document Analysis Systems
(DAS2000), Rio de Janeiro, Brazil, December 2000.

[25] W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical
Recipes in C, Cambridge University Press, Cambridge, 1988.

[26] Y. Wang, http://students.washington.edu/ylwang/
auttabgen.html.

[27] M. Goossens, F. Mittelbach, A. Samarin, The LATEX
Companion, Addison-Wesley Publishing Company, Reading,
MA, 1994.

[28] T. Kanungo, Dvi2tiJ user manual, UW English Document
Image Database-(I) Manual, 1993.

[29] RAF Technology Inc., DAFS: Document Attribute Format
Speci?cation, 1995.

http://students.washington.edu/ylwang/auttabgen.html.
http://students.washington.edu/ylwang/auttabgen.html.

Y. Wang et al. / Pattern Recognition 37 (2004) 1479–1497 1497

[30] J. Liang, Document structure analysis and performance
evaluation, Ph.D. Thesis, University of Washington, Seattle,
WA, 1999.

[31] Y. Wang, I.T. Phillips, R. Haralick, Statistical-based approach
to word segmentation, in: 15th International Conference on
Pattern Recognition, ICPR2000, Vol. 4, Barcelona, Spain,
September 2000, pp. 555–558.

[32] RAF Technology Inc., Illuminator User’s Manual, 1995.

[33] R. Haralick, L. Shapiro, Computer and Robot Vision, Vol. 1,
Addison-Wesley, Reading MA, 1997.

[34] H. Wasserman, K. Yukawa, B. Sy, K. Kwok, I.T. Phillips,
A theoretical foundation and a method for document table
structure extraction and decomposition, in: D. Lopresti, J.
Hu, R. Kashi (Eds.), Document Analysis Systems V, Fifth
IAPR International Workship on Document Analysis Systems,
Princeton, NJ, USA, August 2002, pp. 291–294.

About the Author—YALIN WANG received the BS and MS degrees from Tsinghua University, Beijing, China, in computer science, in
1994 and 1997, and received the Ph.D. degree from the University of Washington, Seattle, in 2002, in electrical engineering. His research
interests include image processing, pattern recognition, document image analysis, medical imaging, computer graphics and geometric
modeling. He has published a dozen papers in the area of document image analysis. Dr. Wang is currently working as an assistant researcher
in Mathematics Department, UCLA where he has been involved in projects concerning medical imaging, geometric modeling and computer
graphics. He was the best student paper award winner in “Fifth IAPR International Workshop on Document Analysis System”, Princeton,
NJ, USA, August 2002.

About the Author—IHSIN T. PHILLIPS received the BS, MS and Ph.D. degrees in 1979, 1981, and 1984, respectively, all in computer
science, from the University of Maryland, College Park. Currently, she is the chair of the Department of Computer Science at Queens
College, the City University of New York. Her research areas include image processing, pattern recognition, document image understanding,
document image database design, and performance evaluation of document image analysis, and recognition systems. Her most signi?cant
contribution to the ?eld of document image analysis and recognition has been the leadership role she has in the design and creation of the
three sets of document image databases: UW-I, UW-II, and UW-III. She has served as program committee member for several IEEE and
IAPR conferences and workshops. She is currently the chairperson of the IAPR technical committee on performance evaluation. She is a
senior member of IEEE and a member of the IEEE computer Society.

About the Author—ROBERT M. HARALICK is a distinguished professor in the Department of Computer Science, Graduate Center,
City University of New York. He is responsible for developing the gray scale cooccurrence texture analysis technique and the facet model
technique for image processing. In high level computer vision, he has worked on robust methods for photogrammetry and developed fast
algorithms for solving the consistent labeling problem. He has developed shape analysis and extraction techniques using mathematical
morphology, the morphological sampling theorem, and fast recursive morphology algorithms. In the area of document image understanding,
Dr. Haralick, along with Dr. I. Phillips, developed a comprehensive ground-truthed set of some 1600 document image pages most in English
and some 200 pages in Japanese. He has also developed algorithms for document image skew angle estimation, zone delineation, and
word and text line bounding box delineation. His most recent research is in the area of computer vision performance characterization and
covariance propagation. He is a fellow of IEEE for his contributions in computer vision and image processing and a fellow of IAPR for
his contributions in pattern recognition, image processing, and for service to IAPR. He has published more than 500 papers and recently
completed his term as the president of the International Association for Pattern Recognition.

	Table structure understanding and its performance evaluation
	Introduction
	Literature review
	Table structure understanding problem statement
	Document structure model
	Problem statement

	Table structure understanding algorithm
	Column style labeling
	Large horizontal blank block equivalence subsets location
	Statistical refinement
	Iterative updating optimization
	Problem statement
	Probability estimation
	Iterative updating optimization algorithm

	Table decomposition algorithm
	Global parameter optimization scheme

	Automatic table ground truth generation
	Table ground truth specification
	Automatic table ground truth generation
	Parameter generator
	Table latex file generation tool
	DAFS file generation tools
	Table ground truth generator
	Table ground truth validation

	Table structure understanding performance evaluation
	Experimental results
	Statistical optimization algorithm experimental results on phi3 level
	Statistical optimization algorithm with local maximum line search experimental results on phi3 level
	Table detection result comparison

	Conclusion and future work
	Summary
	References

