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Abstract. In this paper, we propose a method to solve PDEs on surfaces
with arbitrary topologies by using the global conformal parametrization.
The main idea of this method is to map the surface conformally to 2D
rectangular areas and then transform the PDE on the 3D surface into a
modified PDE on the 2D parameter domain. Consequently, we can solve
the PDE on the parameter domain by using some well-known numerical
schemes on R

2. To do this, we have to define a new set of differential oper-
ators on the manifold such that they are coordinates invariant. Since the
Jacobian of the conformal mapping is simply a multiplication of the con-
formal factor, the modified PDE on the parameter domain will be very
simple and easy to solve. In our experiments, we demonstrated our idea
by solving the Navier-Stoke’s equation on the surface. We also applied
our method to some image processing problems such as segmentation,
image denoising and image inpainting on the surfaces.

1 Introduction

Image processing on the surface has become more and more important in medical
imaging, computer graphics and computer vision. Many image processing tech-
niques involve solving a partial differential equation (PDE) on the surface. In 2D
image processing, variational approaches have been widely used. The minimiza-
tion procedure can be reformulated as a partial differential equation, using the
Euler-Lagrange equation. In order to extend the 2D image processing techniques
to 3D, we therefore need to formulate a technique to solve PDEs on surfaces with
arbitrary topologies.

In this paper, we propose to solve PDEs on surfaces by using the global
conformal parametrization. The main idea is to map the surface conformally
to the 2D rectangles with the minimum number of coordinates patches. The
problem can then be solved by solving a modified PDE on the 2D parameter
domain. To do this, we have to define a new set of differential operators on the
manifold. Once a PDE on the 3D surface is reformulated to the corresponding
PDE on the 2D domain, we can solve the PDE on 2D by using some well-
known numerical schemes. Since the Jacobian of the conformal mapping is simply
a multiplication of the conformal factor, the modified PDE on the parameter
domain will be very simple and easy to solve.
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Recently, some level set based PDE solving approaches have been proposed
([5,6]). Compared with the level set based approaches, we explicitly describe the
manifold by the conformal parametrization, instead of the implicit representa-
tion of the level set function. We use a new set of differential operators on the
manifold, without doing a projection of the Euclidean differential operators. Our
method considers maps which are defined only on the manifold so we do not need
to extend maps to a narrow band of the surface.

2 Previous Work

Several research groups have reported works on solving PDEs on the surface.
Turk [1] proposed to generate textures on arbitrary surfaces using reaction-
diffusion, which require to solve PDE on the surface. Dorsey et al. [2] propose
to solve PDEs on the surface for virtual weathering. Both of them solved the
PDE directly on the triangulated surface, which involve the discretization of the
equations in general polygonal grid. Stam [3] proposed to simulate fluid flow on
the surface via solving the Navier-Stokes equation. He achieved this by combin-
ing the two dimensional stable fluid solver with an atlas of parametrizations of
a Catmull-Clark surface. Clarenz et al. [4] has proposed an algorithm for solv-
ing finite element based PDEs on point surfaces. They constructed a number of
local FE matrices that represent the surface properties over small point neigh-
borhoods. These matrices are next assembled in a single matrix that allows PDE
discretization and solving on complete surface. Sapiro et al. [5] [6] implemented
a framework for solving PDEs on the surface via the level set method. They
represented the surface implicitly by the zero-level set of an embedding function
and extend the data on the surface to the 3D volume. This allowed them to
perform all the computation on the fixed Cartesian grid.

3 Mathematical Theory

3.1 Computation of Conformal Parameterization

A diffeomorphism f : M → N is a conformal mapping if it preserves the first
fundamental form up to a scaling factor (the conformal factor). Mathematically,
this means that ds2

M = λf∗(ds2
N ), where ds2

M and ds2
N are the first fundamental

form on M and N respectively and λ is the conformal factor. (See [7]) For a
diffeomorphism between two genus zero surfaces, a map is conformal if and only
if it minimizes the harmonic energy,Eharmonic. However, this is not true for
surfaces with genus equal to one or higher.

For high genus surfaces, Gu et. al [8] has proposed an efficient approach to
parameterize surfaces conformally to the 2D rectangles. This approach is based
on the homology group theory, the cohomology group theory and the Hodge
theory. We can summarize the algorithm with the following five steps. For details,
please refer to [8].
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Step 1: Given a high genus surface, find the homology basis {ξ1, ..., ξ2g} of its
homology group.

Step 2: Given the homology basis {ξ1, ..., ξ2g}, compute its dual basis
{w1, ..., w2g} which is called the cohomology basis.

Step 3: Diffuse the cohomology basis elements to harmonic 1-forms. This can be
done by solving the following simultaneous equations:
(1) dw = 0 (closedness) (2) ∆w = 0 (harmonity) (3)

∫
ξi

wj =
δij (duality)
The existence of solution is guaranteed by Hodge theory.

Step 4: Compute the Hodge star conjugate {∗w1, ...,
∗ w2g} of {w1, ..., w2g}

Step 5: Integrate the holomorphic 1-form and get the conformal mapping: f(x) =∫
γ w + i∗w, where w = Σλiwi

The above five steps allow us to compute a conformal parametrization from
the surface onto the 2D domain. (See Figure 1)

Fig. 1. Conformal parametrization of a high genus surface onto the 2D rectangles

3.2 Differential Operators on Manifolds

Many physical phenomenon can be explained via PDEs. In image processing,
variational approaches are often used, which induces PDE solving. Therefore, it
is important to define a set of partial differential operators on general manifolds.
In this section, the partial differential operators on manifolds and the covariant
differentiation on tensor fields will be discussed.

Let M be a manifold and φ : R
2 → M be the global conformal parametriza-

tion of M. With the conformal parametrization, we can do calculus on surfaces
similar to what we do on R

2. Suppose f : M → R is a smooth map. We will
firstly define partial derivative, Dxif , of f . On R

2, we usually define the partial
derivative, ∂g

∂xi
, by taking limit. For example, ∂g

∂x = lim�x→0
f(x+�x,y)−f(x,y)

�x .
With the conformal parametrization, we can define the partial derivative on
scalar functions in the same manner. Because of the stretching effect, we have
to modify the denominator in the limit a little bit. Specifically, we define (1):

Dxf = lim�x→0
f◦φ(x+�x,y)−f◦φ(x,y)

dist(x+�x,x) = lim�x→0
f◦φ(x+�x,y)−f◦φ(x,y)√

λ�x
= 1√

λ

∂f◦φ
∂x ,

where λ is the conformal factor. Dyf is defined similarly.
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Now, the gradient of a function f , ∇Mf , is characterized by: df(Y ) =<
∇Mf, Y >. Simple checking gives us: ∇Mf =

∑
i,j gij∂if∂j , where (gij) is the

inverse of the Riemannian metric (gij).
With the conformal parametrization, we can define the gradient of f similar

to the definition on R
2. Namely, (2):

∇Mf = Dxf i + Dyf j where

(i, j) = ( ∂
∂x/

√
< ∂

∂x , ∂
∂x > , ∂

∂y/
√

< ∂
∂y , ∂

∂y >)

= 1
λ [ f◦φ

∂x
∂
∂x + f◦φ

∂y
∂
∂y ]

Suppose h : M → R is a smooth function. With this definition of gradient,
we still have the following useful fact as in R

2:

Length of h−1(0) =
∫

M δ(h)
√

< ∇Mh, ∇Mh >dS

=
∫

M

√
< ∇MH(h), ∇MH(h) >dS

=
∫

C
δ(h ◦ φ)

√
λ ||∇h ◦ φ||dxdy

=
∫

C

√
λ ||∇H(h ◦ φ)||dxdy (3)

where H is the Heaviside function. (See Appendix)
Next, we need to give a well-defined definition of differential operator on vec-

tor field. This is based on the tensor calculus [9]. In Euclidean space, we conven-
tionally differentiate the vector field (x1(t), ..., xn(t)) on a curve pointwisely to
get (x′

1(t), ..., x
′
n(t)). However, pointwise differentiation does not work for gen-

eral manifolds because it is not coordinate invariant. For example, consider the
parameterized circle in the plane given in Euclidean coordinate (x(t), y(t)) =
(cos t, sin t). Its acceleration at time t is (−cos t, −sin t). However, in polar co-
ordinates, the same curve is described as (r(t), θ(t)) = (1, t) and the acceleration
is (0, 0).

In order to differentiate a vector field
−→
V (t) along a curve, we have to write a

difference quotient involving
−→
V (t) and

−→
V (t0) which live on two different tangent

spaces. Therefore, it is not appropriate to subtract. Secondly, even if we can
differentiate the vector field pointwise, it is not guaranteed that the ”derivative”
is a tangent vector on the manifold.

We therefore need to define a differential operator on the vector field, which is
coordinate invariant. This can be done by covariant differentiation ∇XY , where
X is called the direction of the differentiation. To do so, we need to develop a
way to compare tangent vectors at different points. On R

2, we usually parallelly
translate the vectors and subtract. But on general manifolds, we do not have
the concept of parallel translation. We say that a vector field

−→
V (γ(t)) along a

curve γ(t) is parallel if: Dt
−→
V (γ(t)) = orthogonal projection of d

dt

−→
V (γ(t)) onto

the tangent space = 0. We have the following important fact:

Parallel Translation : Given a curve γ : I → M and a vector
−→
V 0 ∈ Tγ(t0)M ,

there exists a unique parallel vector field
−→
V along γ with

−→
V (t0) = V0.
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With the parallel translation along a curve γ, we can define an operator:
P γ

t0t1 : Tγ(t0)M → Tγ(t1)M by setting P γ
t0t1(

−→
V 0) = V (t1) where V is the parallel

vector field along γ with
−→
V (0) =

−→
V 0. This is clearly an linear isomorphism.

Now, we can define ∇XY |p as follows: let γ : [0, 1] → M be a curve such that

γ(0) = p and γ′(0) = Y |p. We define (4): ∇XY |p = limt→0
P γ −1

0t Y (γ(t))−Y (p)
t

The covariant derivative satisfies the following properties:

(P1) ∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M)
(P2) ∇X(aY1 + bY2) = a∇XY1 + b∇XY2, a, b ∈ R

(P3) ∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M).

The above properties will determine the expression of the covariant deriva-
tive. Given a Riemannian manifold (M, g) where g = (gij) is the Riemannian
metric. Suppose {∂i} is the coordinate basis of the vector field. A simple veri-
fication will tell us the covariant derivative can be calculated by the following
formula:

< ∇∂i∂j , ∂l >= 1/2(∂igjl + ∂jgli − ∂lgij)

Simple calculation gives (5):

∇∂i∂j = Γ m
ij ∂m where Γ m

ij = 1/2 gml(∂igjl + ∂jgli − ∂lgij)

Suppose now the parametrization is conformal. The Riemannian metric (gij)
is simply (gij) = λI, where λ, I are the conformal factor and the identity matrix
respectively. We then have the following formula (6):

∇∂x∂x = 1
2λ

∂λ
∂x (∂x−∂y); ∇∂y ∂y = 1

2λ
∂λ
∂y (−∂x+∂y); ∇∂x∂y = 1

2λ (∂λ
∂y ∂x+ ∂λ

∂x∂y)

With this formula and the above properties (P1)-(P3), we can calculate ∇XY
easily. Thus for example:

∇a ∂
∂x +b ∂

∂y

∂
∂y = a∇ ∂

∂x

∂
∂y + b∇ ∂

∂y

∂
∂y = a

2λ(∂λ
∂y ∂x + ∂λ

∂x∂y) + b
2λ (−∂λ

∂y ∂x + ∂λ
∂y ∂y)

= 1
2λ

∂λ
∂y (a − b)∂x + 1

2λ (a∂λ
∂x + b∂λ

∂y )∂y

With the definition of covariant derivative, we can define the divergence of
a vector field

∑2
i=1 Xi

∂
∂xi

. The idea is to take the covariant derivative of Xi

with respect to xi and sum them up, we then get a scalar which is called the
divergence of the vector field. For conformal parametrization, we have (7):

divM (Σ2
i=1Xi

∂
∂xi

) =
∑2

i=1
1
λ∂i(Xiλ)

If we calculate the divergence of ∇Mf , we get the Laplacian of f :

�Mf =
2∑

j=1

(1/λ) ∂j∂jf (8)

Interestingly, with the above definitions, we still have the integration by part
formula and the Green’s formula:

∫
M < ∇Mu, X > dV = −

∫
M udivMXdV +

∫
∂M u < X,

−→
N > dṼ ,

−→
N is the

unit normal vector. (Integration by part) (9)



312 L.M. Lui, Y. Wang, and T.F. Chan

∫
M (u�Mv − v�Mu)dV =

∫
∂M (u∇Mv · −→N − v∇Mu · −→N )dṼ

(Green’s Theorem) (10)

Also, suppose C is a curve represented by the zero level set of φ : M → R.
We have the following useful property, similar to that on R

2:

Geodesic curvature of C = divM ( ∇M φ
||∇Mφ|| ) (11) (See Appendix)

4 Navier-Stokes Equation on Surfaces

In this section, we will illustrate our idea by solving the Navier-Stokes equation
on surfaces with arbitrary topologies. The idea is to parameterize the Riemann
surface conformally onto the rectangular parameter domain based on the holo-
morphic differential one forms (Section 3.1). We then use the stable fluid solver
[10] on the 2-D domain to solve the problem.

On R
2, fluid flow is governed by the Navier-Stokes equation. For incompress-

ible fluid flow, we have the following (*):
∂u
∂t = −(u · �)u + v∇2u + f and ∇ · u = 0 (imcompressibility) (12)

where u = (u1, u2) is the fluid’s velocity, v is the viscosity and f = (f1, f2) are
external forces.

We can simulate the fluid flow as follow: we first use the stable fluid solver
to solve (*). Then update the position of the fluid by xnew = xold + udt, where
xnew = updated position of the fluid particle and xold= previous position of the
fluid particle.

To simulate fluid flow on the Riemann surface, we have to modify the 2D
Navier-Stokes equation by the manifold version of gradient and lapacian. Replac-
ing the gradient and laplacian by the manifold version of gradient and laplacian,
we get the corresponding Navier-Stokes equation for the Riemann surface M:

∂u
∂t

= −(u · ∇M )u + v�Mu + f (13)

Let φ be the conformal parametrization of M and w = u ◦ φ. We have:

∂w
∂t

= − 1
λ

(w · �)w +
1
λ

v�w + f (14)

Note that it is really the governing equation for fluids on the manifold — it
is the same physics that we know. For detail, see Aris’s book. [11]

We can next use the Stable Fluid Solver introduced by Stam to solve the
Navier-Stokes equation. We describe the algorithm as follow:

Step 1: (Adding force) We solve: ∂w1
∂t = f . The iterative scheme is: w1 = w0+dtf

Step 2: (diffusion equation) We solve: ∂w2
∂t = 1

λv�w1. We use a simple implicit
solver to get the iterative scheme: (I − dt 1

λv�)w2 = w1.
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Fig. 2. Simulation of snow flowing down the surface

Fig. 3. Fluid flow on the surface in (A). Navier-Stoke’s equation for surface decoration
in (B).

Step 3: (advection equation) We solve: ∂w3
∂t = − 1

λ(w2 · �)w3. We use a semi-
Lagrangian to get an iterative scheme: w3 = w2(x − dt 1

λw2(x))
Step 4: (projection) We project w onto its imcompressible (divergence free) com-

ponent. For this, we first solve the Poisson equation: �ϕ = ∇ · w3

We then update: w4 = w3 − 1
λ∇ϕ. Update w = w4.

Step 5: (Update fluid position) Update x by xnew = xold + wdt

As an example, we simulate the snow flowing down the surface based on the
Navier-Stokes equation in Figure 2. In Figure 3 (A), we simulate fluid flow on
a bunny surface by adding a S-shaped force. In Figure 3 (B), we simulate fluid
flow on surfaces for surface decoration.

5 Image Processing on Surfaces

5.1 Chan-Vese Segmentation on Surfaces

Segmentation is an important technique in image processing to extract useful
region. One commonly used technique is the Chan-Vese (CV) segmentation tech-
nique, which is based on the level set method [12]. Here, we will extend the CV
segmentation on R

2 to arbitrary Riemann surface M .



314 L.M. Lui, Y. Wang, and T.F. Chan

Let φ : R
2 → M be the conformal parametrization of the surface M . We

propose to minimize the following energy functional: (15)

F (c1, c2, ψ) =
∫

M (u0−c1)2H(ψ)dS+
∫

M (u0−c2)2(1−H(ψ))dS+νlength of
ψ−1({0}) =

∫
M

(u0 − c1)2H(ψ)dS +
∫

M
(u0 − c2)2(1 − H(ψ))dS +

ν
∫

M |∇MH(ψ)|MdS,

where ψ : M → R is the level set function and | · |M =
√

< ·, · >.

With the conformal parametrization, we have:

F (c1, c2, ψ) =
∫

R2 λ(u0 ◦φ−c1)2H(ψ ◦φ)dxdy +
∫

R2 λ(u0 ◦φ−c2)2(1−H(ψ ◦
φ))dxdy

+ν
∫

R2

√
λ|∇H(ψ ◦ φ)|dxdy,

For simplicity, we let ζ = ψ ◦ φ and w0 = u0 ◦ φ. Fixing ζ, we must have:

c1(t) =
�

Ω
w0H(ζ(t,x,y))λdxdy�

Ω
H(ζ(t,x,y))λdxdy

(16)

c2(t) =
�

Ω
w0(1−H(ζ(t,x,y))λdxdy�

Ω
(1−H(ζ(t,x,y)))λdxdy

(17)

Fixing c1, c2, the Euler-Lagrange equation becomes:

∂ζ

∂t
= λδ(ζ)[ ν

1
λ

� ·(
√

λ
∇ζ

||∇ζ|| ) − (w0 − c1)2 + (w0 − c2)2] (18)

Fig. 4. CV segmentation on surface in (A). CV segmentation on surface for sulci ex-
traction on the cortical surface in (B).

In Figure 4(A), we illustrate the CV segmentation on the bunny surface. As
shown in the figure, the initial contour evolves to the original image in a few
iterations. One application of CV segmentation is to extract the sulci position on
the cortical surface. The sulci position is usually the high curvature region. We
can consider the intensity as a function of curvatures, such as Mean curvatures
and Gaussian curvatures. In Figure 4 (B), we illustrate how we can extract the
sulci position on the cortical surface using CV segmentation. Here, we consider
the mean curvature as the intensity.
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5.2 Image Denoising on Surfaces

One important task of surface processing is the restoration or reconstruction of
a true image u from an observed image f . In many applications, the measure
image is polluted by noise or blur. The distorted image need to be denoised
to understand the useful part of the image. On R

2, Rudin, Osher and Fatemi
(ROF) has proposed the following model [13]:

infuF (u) =
∫

Ω

|∇u| + ν|f − u|2dxdy (19)

We proceed to extend the ROF on 2D to any surface M with arbitrary
topologies. Let φ be the conformal parametrization of M and ζ = u◦φ. Following
the 2D ROF model, we propose to minimize the following energy:

infuF (u) =
∫

M |∇Mu|M + ν|f − u|2dS (20) or

infuF (ζ) =
∫

R2

√
λ|∇ζ| + λν|f − ζ|2dxdy (21)

We can minimize the above energy by solving the Euler-Lagrange equation:
∂u
∂t = 2ν(f − u) + divM ( ∇M u

|∇M u|M ) (22)
or
∂ζ
∂t = 2ν(f −ζ)+ 1

λdiv(
√

λ ∇ζ
|∇ζ| ) on the rectangular parameter domain. (23)

and ∂ζ
∂−→n = 0 on the boundary (24).

Fig. 5. ROF denoising on the human face

As an example, we use the ROF model to denoise the dirty scar on the human
face in Figure 5. It is observed that the image can be significantly improved.

5.3 Image Inpainting on Surfaces

Inpainting, originally an artist’s work, is the process of filling in the missing or
desired image information where it is unavailable. (see Figure 6). Such ”defect”
domain may be introduced by the aging of the canvas and oil of an ancient
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painting, and the occlusion by undesired objects in front of a scene of interest.
For 2D images, Chan & Shen has introduced an inpainting model via curvature
driven diffusion (CDD) [14]. We are going to extend this model to 3D Riemann
surfaces.

Suppose Ω is the domain of the image on R
2. Let D be the inpainting domain

(the occluded region). The CDD model reads:
∂u
∂t = ∇ · [ g(|κ|)

|∇u| ∇u], x ∈ D (25)

and u = u0, x ∈ Dc (26)
Here κ denotes the curvature, and g(s) is defined to be zero if s = 0 and

equal to infinity if s = ∞.
The curvature κ at a pixel x is the scalar curvature of the isophote through

it and is given by: κ = ∇ · ( ∇u
|∇u| ) (27)

Suppose now Ω is the image domain on a Riemann surface M . D ⊂ M is
the inpainting domain. Let φ be the conformal parametrization of the surface
and let ζ = u◦φ. Replacing the gradient and divergence by the manifold version
of gradient and divergence, we get the CDD inpainting model for the Riemann
surface M :

∂u
∂t = divM · [ g(|κ|)

|∇M u|M ∇Mu] = 1
λ∇ · [

√
λg(|κ|)
|∇ζ| ∇ζ], x ∈ φ−1(D) (29)

and ζ = ζ0, x ∈ φ−1(Dc) (30)
The curvature κ at a pixel x is given by:

κ = divM · ( ∇M u
|∇M u|M ) = 1

λ∇ · (
√

λ ∇ζ
|∇ζ| ) (31)

In Figure 6, we illustrate the image inpainting on the human face. In (a),
some region of the image is occluded. In (b), the image is effectively restored
using the curvature driven diffusion inpainting technique.

Fig. 6. Curvature driven diffusion inpainting on the human face

6 Conclusion and Future Work

In this paper, we propose a method to solve partial differential equations on
surface with arbitrary topologies. The idea is to map the surface conformally onto
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a simple parameter domain, namely, the 2D rectangle. We can next transform the
PDE on the surface into a modified PDE on the 2D domain. We can then solve
the PDE with the well-developed numerical schemes on R

2. With the conformal
parametrization, the differential operators defined on the surface closely resemble
to the usual Euclidean counterpart, except for a multiplication of the conformal
factor. Also, the parametrization of the surface using holomorphic 1-form allows
us to parametrize (high genus)surface with the minimum number of coordinate
chart. Thus, less boundary adjustment are needed when solving the PDEs on
the surface. Finally, unlike the conventional way that projects the differential
operators on R

3 onto the surface, we directly define differential operators on
the parameter domain without the need of doing projection. We thus avoid
the complicated projection operation in our algorithm. We have illustrated our
method by solving the Navier-Stokes equation on the surface. We also tested
our method by solving some PDE-based surface processing problems, such as
surface segmentation and surface denoising. In the future, we will look for more
applications of solving PDEs on the surface.
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Appendix

Claim : Suppose h : M → R is a smooth function. Then:
Length of h−1(0) =

∫
M

√
< ∇MH(h), ∇MH(h) >dS =

∫
C

√
λ ||∇H(h ◦

φ)||dxdy

Proof :

Recall that the Co-area formula reads:∫
Ω⊂R2 f(x, y)|∇u|dxdy =

∫
R

∫
{u(x,y)=r} f(x, y)dHdr

where H is the Hausdorff measure.

Let φ be the conformal parametrization of the surface M and ζ = u ◦ φ.
Then,∫

M
|∇MH(u)|MdS =

∫
R2 δ(ζ)|∇ζ|

√
λdxdy=

∫
R

∫
{ζ(x,y)=r}

√
λδ(ζ)dsdr =

∫
{ζ(x,y)=0} ds

=
∫ 1
0

√
λ|c′(t)|dt =

∫ 1
0

√
λ|φ ◦ c′(t)|dt = length of{u = 0}

where c(t) is the parametrization of ζ(x, y) = 0 Q.E.D.

Claim : Let φ : M → R. The geodesic curvature κ of φ−1({0}) =
divM ( ∇M φ√

<∇M φ,∇M φ>
)

Proof :

Recall that the geodesic curvature of of a curve −→γ

=
√

<Dt
−̇→γ ,Dt

−̇→γ >

<−̇→γ ,−̇→γ >
− <Dt

−̇→γ ,−̇→γ >

<−̇→γ ,−̇→γ >3/2
= <−̇→γ ,Dt

−̇→γ ⊥
>

<−̇→γ ,−̇→γ >3/2

Let the parametrization of the zero level set of φ be −→γ = (X(t), Y (t)). Then
φ(X(t), Y (t)) = 0.

This implies (1): < ∇Mφ, −̇→γ >= 0

and (2): < Dt(∇Mφ), −̇→γ > + < Dt
−̇→γ , ∇Mφ >= 0

Now, Dt
−→
V (t) =

∑2
i=1

∑2
j=1

∑2
k=1(V̇k + Γ k

ijγiVj)∂k

Thus, for conformal parametrization we have (3):

Dt
−̇→γ = (Ẍ+( 1

2λ
∂λ
∂x )(Ẋ2−Ẏ 2)−( 1

λ
∂λ
∂y ẊẎ ) , Ÿ −( 1

2λ
∂λ
∂y )(Ẋ2−Ẏ 2)−( 1

λ
∂λ
∂x )ẊẎ )

and (4):

Dt(∇Mφ) = (φ̇x +( 1
2λ

∂λ
∂x )(φx

2−φy
2)−( 1

λ
∂λ
∂y φxφy) , φ̇y −( 1

2λ
∂λ
∂y )(φx

2−φy
2)−

( 1
λ

∂λ
∂x )φxφy )

Combining (1), (2), (3), (4), we have: Ẋ2 + Ẏ 2 = (1 + (φx/φy)2)Ẋ2 and
<Dt

−̇→γ ⊥
,−̇→γ >

<−̇→γ ,−̇→γ >3/2
= λ(ẊŸ − Ẏ Ẍ)
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+Ẏ (Ẋ2 + Ẏ 2)( 1
2λ

∂λ
∂x )

So, κ = <−̇→γ ,Dt
−̇→γ ⊥

>

<−̇→γ ,−̇→γ >3/2
= λ(ẊŸ −Ẏ Ẍ)

λ3/2(Ẋ2+Ẏ 2)3/2

= 1√
λ
(

φxxφ2
y−2φxyφxφy+φyyφ2

x

(φ2
x+φ2

y)3/2 ) + 1
2λ3/2 (φx

∂λ
∂x + φy

∂λ
∂x )

= 1√
λ
∇ · ( ∇φ

|∇φ| ) + 1
λ3/2 ∇φ · ∇λ = 1

λ∇ · (λ( 1/λ∇φ√
λ|∇φ|2 ))

= 1
λ∇· (λ( ∇M φ√

<∇M φ,∇M φ>
)) = divM ( ∇M φ√

<∇M φ,∇M φ>
) Q.E.D.

= − λ
φy

[φxxẊ2 + 2φxyẊẎ + φyy Ẏ 2]Ẋ − Ẋ(Ẋ2 + Ẏ 2)( 1
2λ

∂λ
∂y )
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