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Abstract. To compare and integrate brain data, data from multiple
subjects are typically mapped into a canonical space. One method to
do this is to conformally map cortical surfaces to the sphere. It is well
known that any genus zero Riemann surface can be conformally mapped
to a sphere. Therefore, conformal mapping offers a convenient method
to parameterize cortical surfaces without angular distortion, generating
an orthogonal grid on the cortex that locally preserves the metric. To
compare cortical surfaces more effectively, it is advantageous to adjust
the conformal parameterizations to match consistent anatomical features
across subjects. This matching of cortical patterns improves the align-
ment of data across subjects, although it is more challenging to create
a consistent conformal (orthogonal) parameterization of anatomy across
subjects when landmarks are constrained to lie at specific locations in
the spherical parameter space. Here we propose a new method, based on
a new energy functional, to optimize the conformal parameterization of
cortical surfaces by using landmarks. Experimental results on a dataset
of 40 brain hemispheres showed that the landmark mismatch energy can
be greatly reduced while effectively preserving conformality. The key
advantage of this conformal parameterization approach is that any lo-
cal adjustments of the mapping to match landmarks do not affect the
conformality of the mapping significantly. We also examined how the pa-
rameterization changes with different weighting factors. As expected, the
landmark matching error can be reduced if it is more heavily penalized,
but conformality is progressively reduced.

1 Introduction

An effective way to analyze and compare brain data from multiple subjects is to
map them into a canonical space while retaining the original geometric informa-
tion as far as possible. Surface-based approaches often map cortical surface data
to a parameter domain such as a sphere, providing a common coordinate system
for data integration [1,2]. One method is to map the cortical surface conformally
to the sphere. Any genus zero Riemann surfaces can be mapped conformally
to a sphere, without angular distortion. Therefore, conformal mapping offers a
convenient way to parameterize the genus zero cortical surfaces of the brain. To
compare cortical surfaces more effectively, it is desirable to adjust the conformal
parameterizations to match specific anatomical features on the cortical surfaces
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Fig. 1. Manually labeled landmarks on the brain surface. The original surface is on
the left. The result of mapping it conformally to a sphere is on the right.

as far as possible (such as sulcal/gyral landmarks in the form of landmark points
or 3D curves lying in the surface). Here we refer to these anatomical features as
landmarks. Some examples of landmarks are shown in Figure 1.

1.1 Previous Work

Several research groups have reported work on brain surface conformal mapping.
Hurdal and Stephenson [3] reported a discrete mapping approach that uses cir-
cle packing to produce “flattened” images of cortical surfaces on the sphere,
the Euclidean plane, or the hyperbolic plane. They obtained maps that are
quasi-conformal approximations to classical conformal maps. Haker et al. [4] im-
plemented a finite element approximation for parameterizing brain surfaces via
conformal mappings. They represented the Laplace-Beltrami operator as a linear
system and solved it for parameterizing brain surfaces via conformal mapping.
Gu et al. [5] proposed a method to find a unique conformal mapping between
any two genus zero manifolds by minimizing the harmonic energy of the map.
They demonstrated this method by conformally mapping the cortical surface to
a sphere.

Optimization of surface diffeomorphisms by landmark matching has been
studied intensively. Gu et al. [5] proposed to optimize the conformal parametriza-
tion by composing an optimal Möbius transformation so that it minimizes the
landmark mismatch energy. The resulting parameterization remains conformal.
Glaunés et al. [6] proposed to generate large deformation diffeomorphisms of the
sphere onto itself, given the displacements of a finite set of template landmarks.
The diffeomorphism obtained can match the geometric features exactly but it is,
in general, not a conformal mapping. Leow et al. [7] proposed a level set based
approach for matching different types of features, including points and 2D or 3D
curves represented as implicit functions. Cortical surfaces were flattened to the
unit square. Nine sulcal curves were chosen and were represented by the inter-
section of two level set functions, and used to constrain the warp of one cortical
surface onto another. The resulting transformation was interpolated using a large
deformation momentum formulation in the cortical parameter space, generaliz-
ing an elastic approach for cortical matching developed in Thompson et al. [8].
Duygu et al. [9] proposed a more automated mapping technique that results
in good sulcal alignment across subjects, by combining parametric relaxation,
iterative closest point registration and inverse stereographic projection.
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1.2 Basic Idea

In this paper, we propose a new method to adjust conformal parameterizations
of the cortical surface so that they match consistent anatomical features across
subjects. This matching of cortical patterns improves the alignment of data
across subjects, e.g., when integrating functional imaging data across subjects,
measuring brain changes, or making statistical comparisons in cortical anatomy
[10].

Our new method, which is based on a new energy functional, optimizes the
conformal parameterization of cortical surfaces by using landmarks. This is done
by minimizing the compound energy functional Enew = Eharmonic+λElandmark,
where Eharmonic is the harmonic energy of the parameterization and Elandmark

is the landmark mismatch energy. We prove theoretically that our proposed Enew

is guaranteed to be decreasing and study the rate of changes of Eharmonic and
Elandmark. Experimental results show that our algorithm can considerably re-
duce the landmark mismatch energy while effectively retaining the conformality
property. Based on these findings, we argue that the conformal mapping provides
an attractive framework to help analyze anatomical shape, and to statistically
combine or compare 3D anatomical models across subjects.

2 Algorithm

2.1 Combined Energy Definition

A diffeomorphism f : M → N is a conformal mapping if it preserves the first
fundamental form up to a scaling factor (the conformal factor). Mathematically,
this means that ds2

M = λf∗(ds2
N ), where ds2

M and ds2
N are the first fundamental

form on M and N , respectively and λ is the conformal factor. For a diffeo-
morphism between two genus zero surfaces, a map is conformal if it minimizes
the harmonic energy1 ,Eharmonic [1]. Based on this fact, we can compute the
conformal mapping by a variational approach, which minimizes the harmonic
energy.

Here we propose a new algorithm that optimizes the conformal parameteriza-
tion using discrete landmarks. This algorithm optimizes the landmark mismatch
energy over all degrees of freedom in the reparameterization group. The map ob-
tained can considerably reduce the landmark mismatch energy while retaining
conformality as far as possible.

Suppose C1 and C2 are two cortical surfaces we want to compare. We let
f1 : C1 → S2 be the conformal parameterization of C1 mapping it onto S2. We
manually label the landmarks on the two cortical surfaces as discrete point sets,
as shown in Figure 1. We denote them as {pi ∈ C1}, {qi ∈ C2}, with pi matching
qi. We proceed to compute a map f2 : C2 → S2 from C2 to S2, which minimizes
the harmonic energy as well as minimizing the so-called landmark mismatch en-
ergy. The landmark mismatch energy measures the Euclidean distance between

1 We adapted the harmonic energy computation in [5].
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the corresponding landmarks. Alternatively, landmark errors could be computed
as geodesic distances with respect to the original surfaces, rather than on the
sphere; here we chose to perform distance computations on the sphere. Using our
algorithm, the computed map should effectively preserve the conformal property
and match the geometric features on the original structures as far as possible.

Let h : C2 → S2 be any homeomorphism from C2 onto S2. We define the
landmark mismatch energy of h as, Elandmark(h) = 1/2

∑n
i=1 ||h(qi))−f1(pi)||2.

where the norm represents distance on the sphere. By minimizing this energy
functional, the Euclidean distance between the corresponding landmarks on the
sphere is minimized.

To optimize the conformal parameterization, we propose to find f2 : C2 → S2

which minimizes the following new energy functional (instead of the harmonic
energy functional), Enew(f2) = Eharmonic(f2) + λElandmark(f2), where λ is a
weighting factor (Lagrange multiplier) that balances the two penalty functionals.
It controls how much landmark mismatch we want to tolerate. When λ = 0,
the new energy functional is just the harmonic energy. When λ is large, the
landmark mismatch energy can be greatly reduced. But more conformality will
be lost (here we regard deviations from conformality to be quantified by the
harmonic energy).

Now, let K represent the simplicial realization (triangulation) of the brain
surface C2, let u, v denote the vertices, and [u, v] denote the edge spanned by
u, v. Our new energy functional can be written as:

Enew(f2) =1/2
∑

[u,v]∈K

ku,v ||f2(u) − f2(v)||2 + λ/2
n∑

i=1

||f2(qi) − f1(pi)||2

=1/2
∑

[u,v]∈K

ku,v ||f2(u) − f2(v)||2 + λ/2
∑

u∈K

||f2(u) − L(u))||2χM (u)

where M = {q1, ..., qn} ; L(qi) = pi if u = qi ∈ M and L(u) = (1, 0, 0)
otherwise. The first part of the energy functional is defined as in [5]. Note that
by minimizing this energy, we may give up some conformality but the landmark
mismatch energy is progressively reduced.

2.2 Optimization of Combined Energy

We next formulate a technique to optimize our energy functional. Suppose we
would like to compute a mapping f2 that minimizes the energy Enew(f2). This
can be solved easily by steepest descent.
Definition 3.1: Suppose f ∈ CPL, where CPL represent a vector space consists of
all piecewise linear functions defined on K. We define the Laplacian as follows:
∆f(u) =

∑
[u,v]∈K ku,v(f(u) − f(v)) + λ

∑
u∈K(f2(u) − L(u))χM (u).

Definition 3.2: Suppose
−→
f ∈ CPL,

−→
f = (f0, f1, f2), where the fi are piecewise

linear. Define the Laplacian of
−→
f as ∆

−→
f = (∆f0(u), ∆f1(u), ∆f2(u)).

Now, we know that f2 = (f20, f21, f22) minimizes Enew(f2) if and only if the
tangential component of ∆f2(u)= (∆f20(u), ∆f21(u), ∆f22(u)) vanishes. That is
∆(f2) = ∆(f2)⊥.

In other words, we should have P−→n ∆f2(u) = ∆f2(u)−(∆f2(u)·−→n )−→n = 0. We
use a steepest descent algorithm to compute f2 : C2 → S2: df2

dt = −P−→n ∆f2(t).
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Algorithm 1. Algorithm to Optimize the Combined Energy Enew

Input (mesh K, step length δt, energy difference threshold δE),
output(f2 : C2 → S2), which minimizes E. The computer algorithm proceeds as follows:

1. Given a Gauss map I : C2 → S2. Let f2 = I, compute E0 = Enew(I)

2. For each vertex v ∈ K, compute P−→n ∆f2(v)

3. Update f2(v) by δf2(v) = −P−→n ∆f2(v)δt

4. Compute energy Enew

5. If Enew − E0 < δE, return f2. Otherwise, assign E to E0. Repeat steps 2 to 5.

Fig. 2. In (a), the cortical surface C1 (the control) is mapped conformally (λ = 0) to
the sphere. In (d), another cortical surface C2 is mapped conformally to the sphere.
Note that the sulcal landmarks appear very different from those in (a) (see landmarks
in the green square). In (g), the cortical surface C2 is mapped to the sphere using our
algorithm (with λ = 3). Note that the landmarks now closely resemble those in (a)
(see landmarks in the green square). (b) and (c) shows the same cortical surface (the
control) as in (a). In (e) and (f), two other cortical surfaces are mapped to the spheres.
The landmarks again appears very differently. In (h) and (i), the cortical surfaces are
mapped to the spheres using our algorithm. The landmarks now closely resemble those
of the control.
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3 Experimental Results

In our experiment, we tested our algorithm on a set of left hemisphere corti-
cal surfaces generated from brain MRI scans of 40 healthy adult subjects, aged
27.5+/-7.4SD years (16 males, 24 females), scanned at 1.5 T (on a GE Signa scan-
ner). Data and cortical surface landmarks were those generated in a prior paper,
Thompson et al. [10] where the extraction and sulcal landmarking procedures
are fully detailed. Using this set of 40 hemispheric surfaces, we mapped all sur-
faces conformally to the sphere and minimized the compound energy matching
all subjects to a randomly selected individual subject (alternatively, the surfaces
could have been aligned to an average template of curves on the sphere). An im-
portant advantage of this approach is that the local adjustments of the mapping
to match landmarks do not greatly affect the conformality of the mapping. In
Figure 2(a), the cortical surface C1 (a control subject) is mapped conformally
(λ = 0) to the sphere. In (d), another cortical surface C2 is mapped conformally
to the sphere. Note that the sulcal landmarks appear very different from those in
(a) (see landmarks in the green square). This means that the geometric features
are not well aligned on the sphere unless a further feature-based deformation is
applied. In Figure 2(g), we map the cortical surface C2 to the sphere with our
algorithm, while minimizing the compound energy. This time, the landmarks
closely resemble those in (a) (see landmarks in the green square).

In Figure 3, statistics of the angle difference are illustrated. Note that under
a conformal mapping, angles between edges on the initial cortical surface should
be preserved when these edges are mapped to the sphere. Any differences in
angles can be evaluated to determine departures from conformality. Figure 3(a)
shows the histogram of the angle difference using the conformal mapping, i.e.
after running the algorithm using the conformal energy term only. Figure 2(b)
shows the histogram of the angle difference using the compound functional that
also penalizes landmark mismatch. Despite the fact that inclusion of landmarks
requires more complex mappings, the angular relationships between edges on

Fig. 3. Histogram (a) shows the statistics of the angle difference using the conformal
mapping. Histogram (b) shows the statistics of the angle difference using our algorithm
(λ = 3). It is observed that the angle is well-preserved.
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Table 1. Numerical data from our experiment. The landmark mismatch energy is
greatly reduced while the harmonic energy is only slightly increased. The table also
illustrates how the results differ with different values of λ. The landmark mismatch
error can be reduced by increasing λ, but conformality will increasingly be lost.

λ = 3 λ = 6 λ = 10

Eharmonic of the initial
(conformal) parameterization: 100.6 100.6 100.6

λElandmark of the initial (conformal)
parameterization: 81.2 162.4 270.7

Initial compound energy
(Eharmonic + λElandmark) : 181.8 263.0 371.3

Final Eharmonic 109.1 (↗ 8.45%) 111.9 (↗ 11.2%) 123.0 (↗ 22.2%)

Final λElandmark 11.2 (↘ 86.2%) 13.7 (↘ 91.6%) 15.6(↘ 95.8%)

Final compound energy
(Eharmonic + λElandmark) 120.3 (↘ 33.8%) 125.6(↘ 52.2%) 138.6 ( ↘ 62.7%)

the source surface and their images on the sphere are clearly well preserved even
after landmark constraints are enforced.

We also tested with other parameter λ with different values. Table 1 shows
numerical data from the experiment. From the Table, we observe that the land-
mark mismatch energy is greatly reduced while the harmonic energy is only
slightly increased. The table also illustrates how the results differ with different
values of λ. We observe that the landmark mismatch error can be reduced by
increasing λ, but conformality is increasingly lost.

4 Conclusion and Future Work

In conclusion, we have developed a new algorithm to compute a map from the
cortical surface of the brain to a sphere, which can effectively retain the original
geometry by minimizing the landmark mismatch error across different subjects.
The development of adjustable landmark weights may be beneficial in compu-
tational anatomy. In some applications, such as tracking brain change in an
individual over time, in serial images, it makes most sense to place a high prior-
ity on landmark correspondence. In other applications, such as the integration
of functional brain imaging data across subjects, functional anatomy is not so
tightly linked to sulcal landmarks, so it may help to trade landmark error to
increase the regularity of the mappings. In the future, we will study the nu-
merical parameters of our algorithm in details to determine how the weighting
factor λ affects the signal to noise for different neuroimaging applications. We
will also compare our algorithm with other existing counterpart quantitatively.
Furthermore, more analysis will be done to examine how well the alignment of
the sulci/gyri is, such as averaging the maps.
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Appendix

A Energy Is Decreasing

Claim : With our algorithm, the energy is strictly decreasing.
Proof : Our energy (in continuous form) can be written as: E(u) = 1/2

∫
||∇u||2

+ λ
∫

δE ||(u − v)||2 where v is the conformal mapping from the control cortical
surface to the sphere. Now,
d
dt |t=0E(u + tw) =

∫
∇u · ∇w + λ

∫
δE(u − v) · w =

∫
∆uw + λ

∫
δE(u − v) · w

In our algorithm, the direction w is taken as: w = −∆u−λδE(u−v). Substituting
this into the above equation, we have d

dt |t=0E(u+ tw) = −
∫
(∇u− (λ)

∫
δE ||u−

v||)2 < 0. Therefore, the overall energy of the mapping is strictly decreasing, as
the iterations proceed.

B Rate of Changes in Eharmonic and Elandmark

To explain why our algorithm can effectively preserve conformalilty while greatly
reducing the landmark mismatch energy, we can look at the rate of change of
Eharmonic and Elandmark. Note that the initial map u we get is almost conformal.
Thus, initially ∆u is very small.
Claim : With our algorithm, the rate of change of Eharmonic(u) is O(||∆u||∞)
and the rate of change of Elandmark is λ2Elandmark(u) + O(||∆u||∞). Here the
norm is the supremum norm over the surface.
Proof : Recall that in our algorithm, the direction w is taken as: w = −∆u −
λδE(u − v). Now, the rates of change are:

Eharmonic =| d

dt
|t=0Eharmonic(u + tw)| = |

∫

∇u · ∇w| = |
∫

∆u · w|

=|
∫

||∆u||2 +
∫

δE∆u · (u − v)| ≤ ||∆u||2∞ + 8λπ||∆u||∞ = O(||∆u||∞)

Elandmark =| d

dt
|t=0Elandmark(u + tw)| = |

∫

(λδE)2(u − v) · w +
∫

δE(u − v) · ∆u|

≤λ2Elandmark(u) + 8π||∆u||∞ = λ2Elandmark(u) + O(||∆u||∞)
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Fig. 4. This figure shows how the harmonic energy and landmark energy change, as the
number of iterations increases, using our steepest descent algorithm. Initially, the rate
of change of the harmonic energy is small while the rate of change of landmark energy is
comparatively large. Note that a Lagrange multiplier governs the weighting of the two
energies, so a compromise can be achieved between errors in landmark correspondence
and deviations from conformality.

Since initially the map is almost conformal and ∆u is very small, the change
in harmonic energy is very small. Conversely, initially the landmark energy is
comparatively large. Since the rate of change of Elandmark is λ2Elandmark(u) +
O(||∆u||∞), the change in landmark energy is more significant (see Figure 4 for
an illustration).
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