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Abstract. Many medical imaging applications require the computation
of dense correspondence vector fields that match one surface with an-
other. To avoid the need for a large set of manually-defined landmarks
to constrain these surface correspondences, we developed an algorithm
to automate the matching of surface features. It extends the mutual in-
formation method to automatically match general 3D surfaces (including
surfaces with a branching topology). First, we use holomorphic 1-forms to
induce consistent conformal grids on both surfaces. High genus surfaces
are mapped to a set of rectangles in the Euclidean plane, and closed
genus-zero surfaces are mapped to the sphere. Mutual information is
used as a cost functional to drive a fluid flow in the parameter domain
that optimally aligns stable geometric features (mean curvature and the
conformal factor) in the 2D parameter domains. A diffeomorphic surface-
to-surface mapping is then recovered that matches anatomy in 3D. We
also present a spectral method that ensures that the grids induced on the
target surface remain conformal when pulled through the correspondence
field. Using the chain rule, we express the gradient of the mutual infor-
mation between surfaces in the conformal basis of the source surface.
This finite-dimensional linear space generates all conformal reparame-
terizations of the surface. We apply the method to hippocampal surface
registration, a key step in subcortical shape analysis in Alzheimer’s dis-
ease and schizophrenia.

1 Introduction

In computational anatomy, surface-based computations are used to statistically
combine or compare 3D anatomical models across subjects, or map functional
imaging parameters onto anatomical surfaces. When comparing data on two
anatomical surfaces, a correspondence field must be computed to register one
surface nonlinearly onto the other. Multiple surfaces can be registered nonlin-
early to construct a mean shape for a group of subjects, and deformation map-
pings can encode shape variations around the mean. This type of deformable
surface registration has been used to detect developmental and disease effects on
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brain structures such as the corpus callosum and basal ganglia [1], the hippocam-
pus [2], and the cortex [3]. Nonlinear matching of brain surfaces can also be used
to track the progression of neurodegenerative disorders such as Alzheimer’s dis-
ease [2], to measure brain growth in development [1], and to reveal directional
biases in gyral pattern variability [4].

Surface registration has numerous applications, but a direct mapping between
two 3D surfaces is challenging to compute. Often, higher order correspondences
must be enforced between specific anatomical points, curved landmarks, or sub-
regions lying within the two surfaces. This is often achieved by first mapping each
of the 3D surfaces to canonical parameter spaces such as a sphere [5,6] or a planar
domain [7]. A flow, computed in the parameter space of the two surfaces [1,8],
then induces a correspondence field in 3D. This flow can be constrained using
anatomic landmark points or curves, or by constraining the mapping of sur-
face regions represented implicitly using level sets [7]. Feature correspondence
between two surfaces can be optimized by using the L2-norm to measure dif-
ferences in convexity [5]. Artificial neural networks can rule out or favor certain
types of feature matches [9]. Finally, correspondences may be determined by us-
ing a minimum description length (MDL) principle, based on the compactness
of the covariance of the resulting shape model [10]. Anatomically homologous
points can then be forced to match across a dataset. Thodberg [11] identified
problems with early MDL approaches and extended them to an MDL appearance
model, when performing unsupervised image segmentation.

By the Riemann uniformization theorem, all surfaces can be conformally em-
bedded in a sphere, a plane or a hyperbolic space. The resulting embeddings form
special groups. Using holomorphic 1-forms and critical graphs, global conformal
parameterization [12] can be used to conformally map any high genus surface
(i.e., a surface with branching topology) to a set of rectangular domains in the
Euclidean plane. In this paper, we use conformal parameterizations to help match
arbitrary 3D anatomical surfaces. Mutual information is used to drive a diffeo-
morphic fluid flow that is adjusted to find appropriate surface correspondences
in the parameter domain. We chose the mean curvature and the conformal factor
of the surfaces as the differential geometric features to be aligned in this study
as they are intrinsic and stable. These choices are illustrative - any scalar fields
defined on the surfaces could be matched, e.g. cortical thickness maps, functional
imaging signals or metabolic data. Since conformal mapping and fluid registra-
tion techniques generate diffeomorphic mappings, the 3D shape correspondence
established by composing these mappings is also diffeomorphic (i.e., provides
smooth one-to-one correspondences).

2 Theoretical Background and Definitions

Due to space limitations, here we list some formal definitions that help describe
our approach, without detailed explanation. For further reading, please refer to
[13] and [14].
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2.1 Surface Parameterization with Riemann Surface Structure

An atlas is a collection of consistent coordinate charts on a manifold, where
transition functions between overlapping coordinate charts are smooth. We treat
R2 as isomorphic to the complex plane. Let S be a surface in R

3 with an atlas
{(Uα, zα)}, where (Uα, zα) is a chart, and zα : Uα → C maps an open set
Uα ⊂ S to the complex plane C. An atlas is called conformal if (1). each chart
(Uα, zα) is a conformal chart. Namely, on each chart, the first fundamental form
can be formulated as ds2 = λ(zα)2dzαdz̄α; (2). the transition maps zβ ◦ z−1

α :
zα(Uα ∩ Uβ) → zβ(Uα ∩ Uβ) are holomorphic.

A chart is compatible with a given conformal atlas if adding it to the atlas
again yields a conformal atlas. A conformal structure (Riemann surface struc-
ture) is obtained by adding all compatible charts to a conformal atlas. A Riemann
surface is a surface with a conformal structure. It has been proven that all metric
orientable surfaces are Riemann Surfaces.

One coordinate chart in the conformal structure introduces a conformal pa-
rameterization between a surface patch and the image plane. The conformal
parameterization is angle-preserving and intrinsic to the geometry.

The surface conformal structure induces special curvilinear coordinate sys-
tem on the surfaces. Based on a global conformal structure, a critical graph can
be recovered that connects zero points in the conformal structure and parti-
tions a surface into patches. Each of these patches can be conformally mapped
to a parallelogram by integrating a holomorphic 1-form defined on the surface.
Figure 1(a)-(c) show an example of the conformal parameterization of a lateral
ventricle surface of a 65-year-old HIV/AIDS patient. The conformal structure of

Fig. 1. Illustrates conformal surface parameterization. (a) - (c) illustrate conformal pa-
rameterizations of ventricular surfaces in the brain for a 65-year-old HIV/AIDS patient.
(d)-(g) show the computed conformal factor and mean curvature on a hippocampal sur-
face, (d)-(e) are two views of the hippocampal surface, colored according to conformal
factor; (f)-(g) are two views of the hippocampal surface, colored according to mean
curvature.
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the ventricular surface is shown in (a). (b) shows a partition of the ventricular
surface, where each segment is labeled by a unique color. (c) shows the param-
eterization domain, where each rectangle is the image, in the parameterization
domain, of a surface component in (b).

For a Riemann surface S with genus g > 0, all holomorphic 1-forms on S form
a complex g-dimensional vector space (2g real dimensions), denoted by Ω1(S).
The conformal structure of a higher genus surface can always be represented in
terms of a holomorphic one-form basis, which is a set of 2g functions ωi : K1 →
R2, i = 1, 2 · · · , 2g. Any holomorphic one-form ω is a linear combination of these
functions. The quality of a global conformal parameterization for a high genus
surface is fundamentally determined by the choice of the holomorphic 1-form.

2.2 Conformal Representation of a General Surface

For a general surface S, we can compute conformal coordinates (u, v) to pa-
rameterize S. Based on these coordinates, one can derive scalar fields including
the conformal factor, λ(u, v), and mean curvature, H(u, v), of the surface po-
sition vector S(u, v): ∂S

∂u × ∂S
∂v = λ(u, v)n(u, v), and H(u, v) = | 1

λ2(u,v) (
∂2

∂u2 +
∂2

∂v2 )r(u, v)|. From the theorem [15], we can regard the tuple (λ, H) as the con-
formal representation of S(u, v).

Clearly, various fields of scalars or tuples could be used to represent sur-
faces in the parameter domain. Because the conformal structure is intrinsic and
independent of the data resolution and triangulation, we use the conformal repre-
sentation, λ(u, v) and H(u, v), to represent the 3D surfaces. This representation
is stable and computationally efficient. Figure 1 (d)-(g) shows the conformal
factor((d) and (e)), and mean curvature((f) and (g)), indexed in color on a hip-
pocampal surface.

2.3 Mutual Information (MI) for Surface Registration

We now describe the mutual information functional used to drive the scalar fields
λ(u, v) and H(u, v) into correspondence, effectively using the equivalent of a 2D
image registration in the surface parameter space (i.e., in conformal coordinates).
Let I1 and I2 be the target and the deforming template images respectively,
and I1, I2 : R2 → R. Let Ω ⊂ R2 be the common parameter domain of both
surfaces (if both are rectangular, the target parameter domain is first matched
to the source parameter domain using a 2D diagonal matrix). Also, let u be a
deformation vector field on Ω. The MI of the scalar fields (treated as 2D images)
between the two surfaces is defined by I(u) =

∫
R2 pu(i1, i2)log

pu(i1,i2)
p(i1)pu(i2)di1di2.

where p(i1) = P (I1(x) = i1), pu(i2) = P (I2(x − u) = i2) and pu(i1, i2) =
P (I1(x)) = i1 and I2(x − u) = i2.

We adopted the framework of D’Agostino et al. [16] to maximize MI with
viscous fluid regularization. Briefly, the deforming template image was treated
as embedded in a compressible viscous fluid governed by Navier-Stokes equation
for conservation of momentum [17], simplified to a linear PDE:

Lv = µ∇2v + (λ + µ)∇(∇· v) + F (x, u) = 0 (1)
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Here v is the deformation velocity, and µ and λ are the viscosity constants.
Following [16], we take the first variation of I(u) with respect to u, and use the
Parzen window method [18] to estimate the joint probability density function
(pdf) pu(i1, i2).

3 The Surface Mutual Information Method for an
Arbitrary Genus Surface

To match two high genus surfaces (i.e., surfaces with the same branching topol-
ogy), we apply our surface mutual information method piecewise. First, we com-
pute conformal representations of the two surfaces based on a global conformal
parameterization. 1 These conformal representations are aligned with mutual in-
formation driven flows, while enforcing constraints to guarantee that the vector-
valued flow is continuous at the patch boundaries. 2 When the chain rule is used,
we can further optimize the mutual information matching results by optimizing
the underlying global conformal parameterization.

Let S1 and S2 be two surfaces we want to match and the conformal parame-
terization of S1 is τ1, conformal parameterization for S2 is τ2, τ1(S1) and τ2(S2)
are rectangles in R2. Instead of finding the mapping φ from S1 to S2 directly, we
can use mutual information method to find a diffeomorphism τ : D1 → D2, such
that: τ−1

2 ◦ τ ◦ τ1 = φ. Then the map φ can be obtained from φ = τ1 ◦ τ ◦ τ−1
2 .

Because τ1, τ and τ2 are all diffeomorphisms, φ is also a diffeomorphism.

3.1 Mutual Information Contained in Maps Between High Genus
Surfaces

A global conformal parameterization for a high genus surface can be obtained by
integrating a holomorphic one-form ω. Suppose {ωi, i = 1, 2, · · · , 2g} is a holo-
morphic 1-form basis, where an arbitrary holomorphic 1-form has the formula

1 Several variational or PDE-based methods have been proposed to match surfaces
represented by parametric meshes [5], level sets, or both [7]. Gu et al. [19] found a
unique conformal mapping between any two genus zero manifolds by minimizing the
harmonic energy of the map. Gu and Vemuri [20] also matched genus-zero closed 3D
shapes by first conformally mapping them to a canonical domain and aligning their
2D representations over the class of diffeomorphisms.

2 The mutual information method [14] measures the statistical dependence of the
voxel intensities between two images. Parameters of a registration transform can be
tuned so that MI is maximal when the two images are optimally aligned. The MI
method has been successful for rigid [21] and non-rigid [22,23] image registration.
Here, we generalize it to match 3D surfaces. For MI to work, a monotonic mapping
in grayscales between images is not required, so images from different modalities can
be registered [24]. Hermosillo et al. [25] adopted linear elasticity theory to regularize
the variational maximization of MI. D’Agostino et al. [16] extended this approach to
a viscous fluid scheme allowing large local deformations, while maintaining smooth,
one-to-one topology [17].
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ω =
∑2g

i=1 λiωi. Assuming the target surface’s parameterization is fixed, the mu-
tual information between it and the source surface’s parameterization is denoted
E(ω), which is a function of the linear combination of coefficients λi. A necessary
condition for the optimal holomorphic 1-form is, ∂E

∂λi
= 0, i = 1, 2, · · · , 2g. If the

Hessian matrix ( ∂2E
∂λi∂λj

) is positive definite, then E will reach the minimum. If
the Hessian matrix is negative definite, E will be maximized.

Our surface mutual information method depends on the selection of holo-
morphic 1-form ω. To match surfaces optimally, we find the holomorphic 1-form
that maximizes the mutual information metric. Suppose a holomorphic func-
tion ω =

∑2g
i=1 λiωi, our goal is to find a set of coefficients λi, i = 1, ..., 2g that

maximize the mutual information, EMI . We solve this optimization problem
numerically as follows:

dEMI = ( dEMI
du

, dEMI
dv

)

(
du

dλ1

du
dλ2

... du
dλ2g

dv
dλ1

dv
dλ2

... dv
dλ2g

)
⎛

⎜
⎜
⎝

dλ1

dλ2

...
dλ2g

⎞

⎟
⎟
⎠ (2)

where (u, v) is the conformal coordinate.
Once we compute dEMI

dλi
, i = 1, 2, ..., 2g, we can use steepest descent to op-

timize the resulting mutual information. A complete description of the surface
mutual information method follows.

Algorithm 1. Surface MI Method (for surfaces of arbitrary genus)
Input (mesh M1, M2,step length δt, MI difference threshold δE),
Output(t : M1 → M2) where t minimizes the surface mutual information.

1. Compute global conformal parameterization of two surfaces, ωj =
∑2g

i=1 siωi,
j = 1, 2; i = 1, 2, ..., 2g, where g is the surface genus number of two surfaces
M1 and M2, and sj

i , j = 1, 2, i = 1, 2, ..., 2g are the coefficients of a linear
combination of holomorphic function basis elements. The steps include com-
puting the homology basis, cohomology basis, harmonic one-form basis and
holomorphic one-form basis.

2. Compute holomorphic flow segmentation of the target surface, M2, from
the global conformal parameterization, ω2, which conformally maps the 3D
surface to a set of rectangles in the Euclidean plane.

3. Compute 2D conformal representation for the target surface, λ2(u, v) and
H2(u, v), where (u, v) is the conformal coordinate;

4. Compute holomorphic flow segmentation of the source surface, M1, and 2D
conformal representation λ1(u, v) and H1(u, v);

5. Apply the mutual information method to optimize the correspondence be-
tween two surfaces, t : (λ1(u, v), H1(u, v)) → (λ2(u, v), H2(u, v)), j = 1, 2
and Hj(u, v), j = 1, 2; and compute mutual information E0

MI ;
6. Compute derivative Dt.
7. Update the global conformal parameterization of source surface, M1, by

changing the coefficients s1(v) = Dt(v)δt.
8. Compute mutual information E, with steps 3, 4, 5.
9. If EMI − E0

MI < δE, return t. Otherwise, assign E to E0 and repeat steps 6
through 9.
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Currently, we use the following numerical scheme in step 6:

1. Compute dEMI/du and dEMI/dv, du/dsi, i = 1, 2, ..., 2g;
2. Compute dv/dsi, i = 1, 2, ..., 2g;
3. Compute Dt = dEMI/dsi, i = 1, 2, ..., 2g with Equation 2.

4 Experimental Results

To make the results easier to illustrate, we chose to encode the profile of surface
features using a compound scalar function C(u, v) = 8λ(u, v) + H(u, v), where
λ(u, v) is conformal factor and H(u, v) the mean curvature. Several examples
are shown matching hippocampal surfaces in 3D. This type of deformable sur-
face registration can help track developmental and degenerative changes in the
brain, and can create average shape models with appropriate boundary corre-
spondences. In the experiments, the velocity field v in Equation 1 was computed
iteratively by convolution of the force field with a filter kernel derived by Bro-
Nielsen and Gramkow [26]. The viscosity coefficients λ and µ were set to 0.9
and 6.0 respectively. The deformation field in the parameter domain (u) was
obtained from v by Euler integration over time, and the deformed template im-
age was regridded when the Jacobian determinant of the deformation mapping
at any point in x − u was smaller than 0.5 [17]. At each step, the joint pdf
was updated and the MI re-computed. Iterations were stopped when MI was no
longer monotonically increasing or when the number of iterations reached 350.
The Parzen parameter h was set to 10 for smoothing the joint pdf. Figure 2 (a)
shows the matching fields for several pairs of surfaces, establishing correspon-
dences between distinctive features. Here geometric features on 3D hippocampal
surface, conformal factor and mean curvature, were conformally flattened to a
2D square. In the 2D parameter domain, data from a healthy control subject was
registered to data from several Alzheimer’s disease patients. Each mapping can
be used to obtain a reparameterization of the 3D surface of the control subject,
by convecting the original 3D coordinates along with the flow. Importantly, in
Figure 2 (a), some consistent 3D geometric features are identifiable in the 2D
parameter domain; bright area (arrows) correspond to high curvature features
in the hippocampal head.

Although validation on a larger sample is required, we illustrate the approach
on left hippocampal surface data from one healthy control subject and five pa-
tients with Alzheimer’s disease. We register the control subject’s surface to each
patient, generating a set of deformation mappings. Figure 2 (b)-(e) show the cor-
respondences as a 3D vector field map connecting corresponding points on two
surfaces being registered. (d) and (e) are a part of surface before and after the
registration. After reparameterization, a leftward shift in the vertical isocurves
adds a larger tangential component to the vector field. Even so, the deformed
grid structure remains close to conformal. The lengths of the difference vectors
are reduced after the MI based alignment; a formal validation study in a larger
sample is now underway.
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Fig. 2. (a) Geometric features on 3D hippocampal surfaces (the conformal factor and
mean curvature) were computed and compound scalar fields were conformally flattened
to a 2D square. In the 2D parameter domain, data from a healthy control subject (the
template, leftmost column) was registered to data from several Alzheimer’s disease
patients (target images, second column). The deformed template images are shown in
the third and fourth (gridded) columns. (b)-(c) show the two 3D hippocampal surfaces
being matched, for (b) a control subject and (c) an Alzheimer’s disease patient. We flow
the surface from (b) to (c). (d)-(e) show the 3D vector displacement map, connecting
corresponding points on the two surfaces, (d) before and (e) after reparameterization
of the source surface using a fluid flow in the parameter domain. These 3D vector fields
store information on geometrical feature correspondences between the surfaces.

5 Conclusions and Future Work

We extended the mutual information method to match general surfaces. This has
many applications in medical imaging. Future work will validate the matching
of hippocampal surfaces in shape analysis applications in degenerative diseases,
as well as building statistical shape models to detect the anatomical effects of
disease, aging, and development. The hippocampus is used as a specific example,
but the method is general and is applicable in principle to other brain surfaces
such as the cortex. Whether or not our new method provides a more relevant cor-
respondences than those afforded by other criteria (minimum description length,
neural nets, or hand landmarking) requires careful validation for each applica-
tion. Because different correspondence principles produce different shape mod-
els, we plan to compare them in future for detecting group differences in brain
structure.
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