
A Machine Learning Based Approach for Table Detection
on The Web

Yalin Wang
Intelligent Systems Laboratory
Dept. of Electrical Engineering

Univ. of Washington
Seattle, WA 98195 US

ylwang@u.washington.edu

Jianying Hu
Avaya Labs Research
233, Mount Airy Road

Basking Ridge, NJ 07920 US

jianhu@avaya.com

ABSTRACT
Table is a commonly used presentation scheme, especially
for describing relational information. However, table under-
standing remains an open problem. In this paper, we con-
sider the problem of table detection in web documents. Its
potential applications include web mining, knowledge man-
agement, and web content summarization and delivery to
narrow-bandwidth devices. We describe a machine learning
based approach to classify each given table entity as either
genuine or non-genuine. Various features reecting the lay-
out as well as content characteristics of tables are studied.
In order to facilitate the training and evaluation of our

table classi�er, we designed a novel web document table
ground truthing protocol and used it to build a large ta-
ble ground truth database. The database consists of 1,393
HTML �les collected from hundreds of di�erent web sites
and contains 11,477 leaf <TABLE> elements, out of which
1,740 are genuine tables. Experiments were conducted us-
ing the cross validation method and an F-measure of 95:89%
was achieved.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications|Information browsers

General Terms
Algorithms

Keywords
Table Detection, Layout Analysis, Machine Learning, Deci-
sion tree, Support Vector Machine, Information Retrieval

1. INTRODUCTION
The increasing ubiquity of the Internet has brought about

a constantly increasing amount of online publications. As
a compact and e�cient way to present relational informa-
tion, tables are used frequently in web documents. Since
tables are inherently concise as well as information rich, the
automatic understanding of tables has many applications in-
cluding knowledge management, information retrieval, web

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

mining, summarization, and content delivery to mobile de-
vices. The processes of table understanding in web doc-
uments include table detection, functional and structural
analysis and �nally table interpretation [6]. In this paper,
we concentrate on the problem of table detection. The web
provides users with great possibilities to use their own style
of communication and expressions. In particular, people use
the <TABLE> tag not only for relational information display
but also to create any type of multiple-column layout to
facilitate easy viewing, thus the presence of the <TABLE>

tag does not necessarily indicate the presence of a relational
table. In this paper, we de�ne genuine tables to be docu-
ment entities where a two dimensional grid is semantically
signi�cant in conveying the logical relations among the cells
[10]. Conversely, Non-genuine tables are document entities
where <TABLE> tags are used as a mechanism for grouping
contents into clusters for easy viewing only. Figure 1 gives
a few examples of genuine and non-genuine tables. While
genuine tables in web documents could also be created with-
out the use of <TABLE> tags at all, we do not consider such
cases in this article as they seem very rare from our ex-
perience. Thus, in this study, Table detection refers to the
technique which classi�es a document entity enclosed by the
<TABLE></TABLE> tags as genuine or non-genuine tables.
Several researchers have reported their work on web table

detection [2, 10, 6, 14]. In [2], Chen et al. used heuris-
tic rules and cell similarities to identify tables. They tested
their table detection algorithm on 918 tables from airline in-
formation web pages and achieved an F-measure of 86:50%.
Penn et al. proposed a set of rules for identifying genuinely
tabular information and news links in HTML documents
[10]. They tested their algorithm on 75 web site front-pages
and achieved an F-measure of 88:05%. Yoshida et al. pro-
posed a method to integrate WWW tables according to the
category of objects presented in each table [14]. Their data
set contains 35,232 table tags gathered from the web. They
estimated their algorithm parameters using all of table data
and then evaluated algorithm accuracy on 175 of the tables.
The average F-measure reported in their paper is 82:65%.
These previous methods all relied on heuristic rules and were
only tested on a database that is either very small [10], or
highly domain speci�c [2]. Hurst mentioned that a Naive
Bayes classi�er algorithm produced adequate results but no
detailed algorithm and experimental information was pro-
vided [6].
We propose a new machine learning based approach for

242



Figure 1: Examples of genuine and non-genuine tables.

table detection from generic web documents. In particu-
lar, we introduce a set of novel features which reect the
layout as well as content characteristics of tables. These
features are used in classi�ers trained on thousands of ex-
amples. To facilitate the training and evaluation of the table
classi�ers, we designed a novel web document table ground
truthing protocol and used it to build a large table ground
truth database. The database consists of 1,393 HTML �les
collected from hundreds of di�erent web sites and contains
11,477 leaf <TABLE> elements, out of which 1,740 are gen-
uine tables. Experiments on this database using the cross
validation method demonstrate signi�cant performance im-
provements over previous methods.
The rest of the paper is organized as follows. We describe

our feature set in Section 2, followed by a brief discussion
of the classi�ers we experimented with in Section 3. In Sec-
tion 4, we present a novel table ground truthing protocol
and explain how we built our database. Experimental re-
sults are then reported in Section 5 and we conclude with
future directions in Section 6.

2. FEATURES FOR WEB TABLE
DETECTION

Feature selection is a crucial step in any machine learning
based methods. In our case, we need to �nd a combination
of features that together provide signi�cant separation be-
tween genuine and non-genuine tables while at the same time
constrain the total number of features to avoid the curse of
dimensionality. Past research has clearly indicated that lay-

out and content are two important aspects in table under-
standing [6]. Our features were designed to capture both of
these aspects. In particular, we developed 16 features which
can be categorized into three groups: seven layout features,
eight content type features and one word group feature. In
the �rst two groups, we attempt to capture the global com-
position of tables as well as the consistency within the whole
table and across rows and columns. The last feature looks at
words used in tables and is derived directly from the vector
space model commonly used in Information Retrieval.
Before feature extraction, each HTML document is �rst

parsed into a document hierarchy tree using Java Swing
XML parser with W3C HTML 3.2 DTD [10]. A <TABLE>
node is said to be a leaf table if and only if there are no
<TABLE> nodes among its children [10]. Our experience in-
dicates that almost all genuine tables are leaf tables. Thus
in this study only leaf tables are considered candidates for
genuine tables and are passed on to the feature extraction
stage. In the following we describe each feature in detail.

2.1 Layout Features
In HTML documents, although tags like <TR> and <TD>

(or <TH>) may be assumed to delimit table rows and table
cells, they are not always reliable indicators of the number
of rows and columns in a table. Variations can be caused
by spanning cells created using <ROWSPAN> and <COLSPAN>
tags. Other tags such as <BR> could be used to move con-
tent into the next row. Therefore to extract layout features
reliably one can not simply count the number of <TR>'s and
<TD>'s. For this purpose, we maintain a matrix to record all

243



the cell spanning information and serve as a pseudo render-
ing of the table. Layout features based on row or column
numbers are then computed from this matrix.
Given a table T , assuming its numbers of rows and columns

are rn and cn respectively, we compute the following layout
features:

� Average number of columns, computed as the average
number of cells per row:

c =
1

rn

rnX
i=1

ci;

where ci is the number of cells in row i, i = 1; :::; rn;

� Standard deviation of number of columns:

dC =

vuut 1

rn

rnX
i=1

(ci � c)� (ci � c);

� Average number of rows, computed as the average
number of cells per column:

r =
1

rn

cnX
i=1

ri;

where ri is the number of cells in column i, i = 1; :::; cn;

� Standard deviation of number of rows:

dR =

vuut 1

cn

cnX
i=1

(ri � r)� (ri � r):

Since the majority of tables in web documents contain
characters, we compute three more layout features based on
cell length in terms of number of characters:

� Average overall cell length: cl = 1

en

Pen

i=1 cli, where en
is the total number of cells in a given table and cli is
the length of cell i, i = 1; : : : ; en;

� Standard deviation of cell length:

dCL =

vuut 1

en

enX
i=1

(cli � cl)� (cli � cl);

� Average Cumulative length consistency, CLC.

The last feature is designed to measure the cell length con-
sistency along either row or column directions. It is inspired
by the fact that most genuine tables demonstrate certain
consistency either along the row or the column direction,
but usually not both, while non-genuine tables often show
no consistency in either direction. First, the average cumu-
lative within-row length consistency, CLCr, is computed as
follows. Let the set of cell lengths of the cells from row i be
Ri, i = 1; : : : ; r (considering only non-spanning cells):

1. Compute the mean cell length, mi, for row Ri.

2. Compute cumulative length consistency within each
Ri:

CLCi =
X
cl2Ri

LCcl:

Here LCcl is de�ned as: LCcl = 0:5 �D, where D =
minfjcl �mij=mi; 1:0g. Intuitively, LCcl measures the
degree of consistency between cl and the mean cell
length, with�0:5 indicating extreme inconsistency and
0:5 indicating extreme consistency. When most cells
withinRi are consistent, the cumulative measure CLCi

is positive, indicating a more or less consistent row.

3. Take the average across all rows:

CLCr =
1

r

rX
i=1

CLCi:

After the within-row length consistency CLCr is com-
puted, the within-column length consistency CLCc is com-
puted in a similar manner. Finally, the overall cumulative
length consistency is computed as CLC = max(CLCr; CLCc).

2.2 Content Type Features
Web documents are inherently multi-media and has more

types of content than any traditional documents. For ex-
ample, the content within a <TABLE> element could include
hyperlinks, images, forms, alphabetical or numerical strings,
etc. Because of the relational information it needs to convey,
a genuine table is more likely to contain alpha or numeri-
cal strings than, say, images. The content type feature was
designed to reect such characteristics.
We de�ne the set of content types T = fImage;Form;

Hyperlink;Alphabetical;Digit;Empty;Othersg. Our content
type features include:

� The histogram of content type for a given table. This
contributes 7 features to the feature set;

� Average content type consistency, CTC.

The last feature is similar to the cell length consistency fea-
ture. First, within-row content type consistency CTCr is
computed as follows. Let the set of cell type of the cells
from row i as Ti, i = 1; : : : ; r (again, considering only non-
spanning cells):

1. Find the dominant type, DTi, for Ti.

2. Compute the cumulative type consistency with each
row Ri, i = 1; : : : ; r:

CTCi =
X
ct2Ri

D;

where D = 1 if ct is equal to DTi and D = �1, other-
wise.

3. Take the average across all rows:

CTCr =
1

r

rX
i=1

CTCi

The within-column type consistency is then computed in
a similar manner. Finally, the overall cumulative type con-
sistency is computed as: CTC = max(CTCr; CTCc).

244



2.3 Word Group Feature
If we treat each table as a \mini-document" by itself, ta-

ble classi�cation can be viewed as a document categoriza-
tion problem with two broad categories: genuine tables and
non-genuine tables. We designed the word group feature to
incorporate word content for table classi�cation based on
techniques developed in information retrieval [7, 13].
After morphing [11] and removing the infrequent words,

we obtain the set of words found in the training data, W.
We then construct weight vectors representing genuine and
non-genuine tables and compare that against the frequency
vector from each new incoming table.
Let Z represent the non-negative integer set. The follow-

ing functions are de�ned on set W.

� dfG :W ! Z, where dfG(wi) is the number of genuine
tables which include word wi, i = 1; :::; jWj;

� tfG : W ! Z, where tfG(wi) is the number of times
word wi, i = 1; :::; jWj, appears in genuine tables;

� dfN : W ! Z, where dfN (wi) is the number of non-
genuine tables which include word wi, i = 1; :::; jWj;

� tfN : W ! Z, where tfN (wi) is the number of times
word wi, i = 1; :::; jWj, appears in non-genuine tables.

� tfT : W ! Z, where tfT (wi) is the number of times
word wi, wi 2 W appears in a new test table.

To simplify the notations, in the following discussion, we
will use dfGi , tf

G
i , dfNi and tfNi to represent dfG(wi), tf

G(wi),
dfN (wi) and tfN (wi), respectively.
Let NG, NN be the number of genuine tables and non-

genuine tables in the training collection, respectively and let
C = max(NG; NN ). Without loss of generality, we assume
NG 6= 0 and NN 6= 0. For each word wi inW, i = 1; :::; jWj,
two weights, pGi and pNi are computed:

pGi =

8<
: tfGi log(

dfG
i

NG

NN

dfN
i

+ 1); when dfNi 6= 0

tfGi log(
dfG
i

NG C + 1); when dfNi = 0

pNi =

8<
: tfNi log(

dfN
i

NN

NG

dfG
i

+ 1); when dfGi 6= 0

tfNi log(
dfN
i

NN
C + 1); when dfGi = 0

As can be seen from the formulas, the de�nitions of these
weights were derived from the traditional tf � idf measures
used in informational retrieval, with some adjustments made
for the particular problem at hand.
Given a new incoming table, let us denote the set includ-

ing all the words in it as Wn. Since W is constructed using
thousands of tables, the words that are present in both W
and Wn are only a small subset of W. Based on the vector
space model, we de�ne the similarity between weight vec-
tors representing genuine and non-genuine tables and the
frequency vector representing the incoming table as the cor-
responding dot products. Since we only need to consider the
words that are present in bothW andWn, we �rst compute
the e�ective word set: We = W \ Wn. Let the words in
We be represented as wmk

, where mk; k = 1; :::; jWej, are
indexes to the words from set W = fw1; w2; :::; wjWjg. we
de�ne the following vectors:

� Weight vector representing the genuine table group:

!

GS=

 
pGm1

U
;
pGm2

U
; � � � ;

pGmjWej

U

!
;

where U is the cosine normalization term:

U =

vuutjWejX
k=1

pGmk
� pGmk

:

� Weight vector representing the non-genuine table group:

!

NS=

 
pNm1

V
;
pNm2

V
; � � � ;

pNmjWej

V

!
;

where V is the cosine normalization term:

V =

vuutjWejX
k=1

pNmk
� pNmk

:

� Frequency vector representing the new incoming table:

!

IT=
�
tfTm1

; tfTm2
; � � � ; tfTmjWej

�
:

Finally, the word group feature is de�ned as the ratio of
the two dot products:

wg =

8>>><
>>>:

!
IT �

!
GS

!
IT �

!
NS

; when
!

IT �
!

NS 6= 0

1; when
!

IT �
!

GS= 0 and
!

IT �
!

NS= 0

10; when
!

IT �
!

GS 6= 0 and
!

IT �
!

NS= 0

3. CLASSIFICATION SCHEMES
Various classi�cation schemes have been widely used in

document categorization as well as web information retrieval
[13, 8]. For the table detection task, the decision tree classi-
�er is particularly attractive as our features are highly non-
homogeneous. We also experimented with Support Vector
Machines (SVM), a relatively new learning approach which
has achieved one of the best performances in text catego-
rization [13].

3.1 Decision Tree
Decision tree learning is one of the most widely used and

practical methods for inductive inference. It is a method
for approximating discrete-valued functions that is robust
to noisy data.
Decision trees classify an instance by sorting it down the

tree from the root to some leaf node, which provides the clas-
si�cation of the instance. Each node in a discrete-valued de-
cision tree speci�es a test of some attribute of the instance,
and each branch descending from that node corresponds to
one of the possible values for this attribute. Continuous-
valued decision attributes can be incorporated by dynami-
cally de�ning new discrete-valued attributes that partition
the continuous attribute value into a discrete set of intervals
[9].
An implementation of the continuous-valued decision tree

described in [4] was used for our experiments. The decision
tree is constructed using a training set of feature vectors with
true class labels. At each node, a discriminant threshold

245



is chosen such that it minimizes an impurity value. The
learned discriminant function splits the training subset into
two subsets and generates two child nodes. The process is
repeated at each newly generated child node until a stopping
condition is satis�ed, and the node is declared as a terminal
node based on a majority vote. The maximum impurity
reduction, the maximum depth of the tree, and minimum
number of samples are used as stopping conditions.

3.2 SVM
Support Vector Machines (SVM) are based on the Struc-

tural Risk Management principle from computational learn-
ing theory [12]. The idea of structural risk minimization
is to �nd a hypothesis h for which the lowest true error is
guaranteed. The true error of h is the probability that h
will make an error on an unseen and randomly selected test
example.
The SVM method is de�ned over a vector space where the

goal is to �nd a decision surface that best separates the data
points in two classes. More precisely, the decision surface by
SVM for linearly separable space is a hyperplane which can
be written as

~w � ~x� b = 0

where ~x is an arbitrary data point and the vector ~w and
the constant b are learned from training data. Let D =
(yi; ~xi) denote the training set, and yi 2 f+1;�1g be the
classi�cation for ~xi, the SVM problem is to �nd ~w and b
that satis�es the following constraints:

~w � ~xi � b � +1 for yi = +1

~w � ~xi � b � �1 for yi = �1

while minimizing the vector 2-norm of ~w.
The SVM problem in linearly separable cases can be e�-

ciently solved using quadratic programming techniques, while
the non-linearly separable cases can be solved by either in-
troducing soft margin hyperplanes, or by mapping the orig-
inal data vectors to a higher dimensional space where the
data points become linearly separable [12, 3].
One reason why SVMs are very powerful is that they are

very universal learners. In their basic form, SVMs learn lin-
ear threshold functions. Nevertheless, by a simple \plug-in"
of an appropriate kernel function, they can be used to learn
polynomial classi�ers, radial basis function (RBF) networks,
three-layer sigmoid neural nets, etc. [3].
For our experiments, we used the SVM light system im-

plemented by Thorsten Joachims.1

4. DATA COLLECTION AND TRUTHING
Since there are no publicly available web table ground

truth database, researchers tested their algorithms in di�er-
ent data sets in the past [2, 10, 14]. However, their data
sets either had limited manually annotated table data (e.g.,
918 table tags in [2], 75 HTML pages in [10], 175 manually
annotated table tags in [14]), or were collected from some
speci�c domains (e.g., a set of tables selected from airline
information pages were used in [2]). To develop our machine
learning based table detection algorithm, we needed to build
a general web table ground truth database of signi�cant size.

1http://svmlight.joachims.org

4.1 Data Collection
Instead of working within a speci�c domain, our goal of

data collection was to get tables of as many di�erent varieties
as possible from the web. To accomplish this, we composed
a set of key words likely to indicate documents containing
tables and used those key words to retrieve and download
web pages using the Google search engine. Three directo-
ries on Google were searched: the business directory and
news directory using key words: ftable, stock, bonds,

figure, schedule, weather, score, service, results,
valueg, and the science directory using key words ftable,
results, valueg. A total of 2,851 web pages were down-
loaded in this manner and we ground truthed 1,393 HTML
pages out of these (chosen randomly among all the HTML
pages). These 1,393 HTML pages from around 200 web sites
comprise our database.

4.2 Ground Truthing
There has been no previous report on how to systemati-

cally generate web table ground truth data. To build a large
web table ground truth database, a simple, exible and com-
plete ground truth protocol is required. Figure 4.2(a) shows
the diagram of our ground truthing procedure. We created
a new Document Type De�nition(DTD) which is a super-
set of W3C HTML 3.2 DTD. We added three attributes for
<TABLE> element, which are \tabid", \genuine table" and
\table title". The possible value of the second attribute is
yes or no and the value of the �rst and third attributes is a
string. We used these three attributes to record the ground
truth of each leaf <TABLE> node. The bene�t of this design
is that the ground truth data is inside HTML �le format.
We can use exactly the same parser to process the ground
truth data.
We developed a graphical user interface for web table

ground truthing using the Java [1] language. Figure 4.2(b)
is a snapshot of the interface. There are two windows. Af-
ter reading an HTML �le, the hierarchy of the HTML �le is
shown in the left window. When an item is selected in the
hierarchy, the HTML source for the selected item is shown
in the right window. There is a panel below the menu bar.
The user can use the radio button to select either genuine
table or non-genuine table. The text window is used to input
table title.

4.3 Database Description
Our �nal table ground truth database consists of 1,393

HTML pages collected from around 200 web sites. There
are a total of 14,609 <TABLE> nodes, including 11,477 leaf
<TABLE> nodes. Out of the 11,477 leaf <TABLE> nodes,
1,740 are genuine tables and 9,737 are non-genuine tables.
Not every genuine table has its title and only 1,308 genuine
tables have table titles. We also found at least 253 HTML
�les have unmatched <TABLE>, </TABLE> pairs or wrong
hierarchy, which demonstrates the noisy nature of web doc-
uments.

5. EXPERIMENTS
A hold-out method is used to evaluate our table classi-

�er. We randomly divided the data set into nine parts.
Each classi�er was trained on eight parts and then tested
on the remaining one part. This procedure was repeated
nine times, each time with a di�erent choice for the test

246



Parser

Adding attributes

HTML with attributes and unique 
index to each table(ground truth)

Validation

HTML File

Hierarchy

(a) (b)

Figure 2: (a) The diagram of ground truthing procedure; (b) A snapshot of the ground truthing software.

part. Then the combined nine part results are averaged to
arrive at the overall performance measures [4].
For the layout and content type features, this procedure

is straightforward. However it is more complicated for the
word group feature training. To compute wg for training
samples, we need to further divide the training set into two
groups, a larger one (7 parts) for the computation of the
weights pGi and pNi , i = 1; :::; jWj, and a smaller one (1

part) for the computation of the vectors
!

GS ,
!

NS , and
!

IT .
This partition is again rotated to compute wg for each table
in the training set.

Table 1: Possible true- and detected-state combina-
tions for two classes.

True
Class

Assigned Class
genuine table non-genuine table

genuine table Ngg Ngn

non-genuine table Nng Nnn

The output of each classi�er is compared with the ground
truth and a contingency table is computed to indicate the
number of a particular class label that are identi�ed as mem-
bers of one of two classes. The rows of the contingency table
represent the true classes and the columns represent the as-
signed classes. The cell at row r and column c is the number
of tables whose true class is r while its assigned class is c.
The possible true- and detected-state combination is shown
in Table 1. Three performance measures Recall Rate(R),
Precision Rate(P) and F-measure(F) are computed as fol-

lows:

R =
Ngg

Ngg +Ngn

P =
Ngg

Ngg +Nng

F =
R+ P

2
:

For comparison among di�erent features and learning al-
gorithms we report the performance measures when the best
F-measure is achieved. First, the performance of various fea-
ture groups and their combinations were evaluated using the
decision tree classi�er. The results are given in Table 2.

Table 2: Experimental results using various feature
groups and the decision tree classi�er.

L T LT LTW
R (%) 87.24 90.80 94.20 94.25
P (%) 88.15 95.70 97.27 97.50
F (%) 87.70 93.25 95.73 95.88
L: Layout only.

T: Content type only.

LT: Layout and content type.

LTW: Layout, content type and word group.

As seen from the table, content type features performed
better than layout features as a single group, achieving an
F-measure of 93:25%. However, when the two groups were
combined the F-measure was improved substantially to 95:73%,
recon�rming the importance of combining layout and con-
tent features in table detection. The addition of the word
group feature improved the F-measure slightly more to 95:88%.
Table 3 compares the performances of di�erent learning

algorithms using the full feature set. The leaning algorithms
tested include the decision tree classi�er and the SVM al-

247



gorithm with two di�erent kernels { linear and radial basis
function (RBF).

Table 3: Experimental results using di�erent learn-
ing algorithms.

Tree SVM (linear) SVM (RBF)
R (%) 94.25 93.91 95.98
P (%) 97.50 91.39 95.81
F (%) 95.88 92.65 95.89

As seen from the table, for this application the SVM with
radial basis function kernel performed much better than the
one with linear kernel. It achieved an F measure of 95:89%,
comparable to the 95:88% achieved by the decision tree clas-
si�er.
Figure 3 shows two examples of correctly classi�ed tables,

where Figure 3(a) is a genuine table and Figure 3(b) is a
non-genuine table.
Figure 4 shows a few examples where our algorithm failed.

Figure 4(a) was misclassi�ed as a non-genuine table, likely
because its cell lengths are highly inconsistent and it has
many hyperlinks which is unusual for genuine tables. The
reason why Figure 4(b) was misclassi�ed as non-genuine is
more interesting. When we looked at its HTML source code,
we found it contains only two <TR> tags. All text strings
in one rectangular box are within one <TD> tag. Its author
used <p> tags to put them in di�erent rows. This points
to the need for a more carefully designed pseudo-rendering
process. Figure 4(c) shows a non-genuine table misclassi-
�ed as genuine. A close examination reveals that it indeed
has good consistency along the row direction. In fact, one
could even argue that this is indeed a genuine table, with
implicit row headers of Title, Name, Company A�liation
and Phone Number. This example demonstrates one of the
most di�cult challenges in table understanding, namely the
ambiguous nature of many table instances (see [5] for a more
detailed analysis on that). Figure 4(d) was also misclassi-
�ed as a genuine table. This is a case where layout features
and the kind of shallow content features we used are not
enough | deeper semantic analysis would be needed in or-
der to identify the lack of logical coherence which makes it
a non-genuine table.
For comparison, we tested the previously developed rule-

based system [10] on the same database. The initial re-
sults (shown in Table 4 under \Original Rule Based") were
very poor. After carefully studying the results from the
initial experiment we realized that most of the errors were
caused by a rule imposing a hard limit on cell lengths in gen-
uine tables. After deleting that rule the rule-based system
achieved much improved results (shown in Table 4 under
\Modi�ed Rule Based"). However, the proposed machine
learning based method still performs considerably better in
comparison. This demonstrates that systems based on hand-
crafted rules tend to be brittle and do not generalize well.
In this case, even after careful manual adjustment in a new
database, it still does not work as well as an automatically
trained classi�er.

(a)

(b)

Figure 3: Examples of correctly classi�ed tables.
(a): a genuine table; (b): a non-genuine table.

Table 4: Experimental results of a previously devel-
oped rule based system.

Original Rule Based Modi�ed Rule Based
R (%) 48.16 95.80
P (%) 75.70 79.46
F (%) 61.93 87.63

248



(a) (b)

(c) (d)

Figure 4: Examples of misclassi�ed tables. (a) and (b): Genuine tables misclassi�ed as non-genuine; (c) and
(d): Non-genuine tables misclassi�ed as genuine.

A direct comparison to other previous results [2, 14] is
not possible currently because of the lack of access to their
system. However, our test database is clearly more general
and far larger than the ones used in [2] and [14], while our
precision and recall rates are both higher.

6. CONCLUSION AND FUTURE WORK
Table detection in web documents is an interesting and

challenging problem with many applications. We present a
machine learning based table detection algorithm for HTML
documents. Layout features, content type features and word
group features were used to construct a novel feature set.
Decision tree and SVM classi�ers were then implemented
and tested in this feature space. We also designed a novel ta-
ble ground truthing protocol and used it to construct a large
web table ground truth database for training and testing.
Experiments on this large database yielded very promising
results.
Our future work includes handling more di�erent HTML

styles in pseudo-rendering, detecting table titles of the rec-
ognized genuine tables and developing a machine learning
based table interpretation algorithm. We would also like to
investigate ways to incorporate deeper language analysis for
both table detection and interpretation.

7. ACKNOWLEDGMENT
We would like to thank Kathie Shipley for her help in

collecting the web pages, and Amit Bagga for discussions on
vector space models.

8. REFERENCES
[1] M. Campione, K. Walrath, and A. Huml. The

java(tm) tutorial: A short course on the basics (the
java(tm) series).

[2] H.-H. Chen, S.-C. Tsai, and J.-H. Tsai. Mining tables
from large scale html texts. In Proc. 18th
International Conference on Computational
Linguistics, Saabrucken, Germany, July 2000.

[3] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20:273{296, August 1995.

[4] R. Haralick and L. Shapiro. Computer and Robot
Vision, volume 1. Addison Wesley, 1992.

[5] J. Hu, R. Kashi, D. Lopresti, G. Nagy, and
G. Wilfong. Why table ground-truthing is hard. In
Proc. 6th International Conference on Document
Analysis and Recognition (ICDAR01), pages 129{133,
Seattle, WA, USA, September 2001.

[6] M. Hurst. Layout and language: Challenges for table
understanding on the web. In Proc. 1st International
Workshop on Web Document Analysis, pages 27{30,
Seattle, WA, USA, September 2001.

[7] T. Joachims. A probabilistic analysis of the rocchio
algorithm with t�df for text categorization. In Proc.
14th International Conference on Machine Learning,
pages 143{151, Morgan Kaufmann, 1997.

[8] A. McCallum, K. Nigam, J. Rennie, and K. Seymore.
Automating the construction of internet portals with
machine learning. In Information Retrieval Journal,
volume 3, pages 127{163, Kluwer, 2000.

249



[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[10] G. Penn, J. Hu, H. Luo, and R. McDonald. Flexible
web document analysis for delivery to narrow-
bandwidth devices. In Proc. 6th International
Conference on Document Analysis and Recognition
(ICDAR01), pages 1074{1078, Seattle, WA, USA,
September 2001.

[11] M. F. Porter. An algorithm for su�x stripping.
Program, 14(3):130{137, 1980.

[12] V. N. Vapnik. The Nature of Statistical Learning
Theory, volume 1. Springer, New York, 1995.

[13] Y. Yang and X. Liu. A re-examination of text
categorization methods. In Proc. SIGIR'99, pages
42{49, Berkeley, California, USA, August 1999.

[14] M. Yoshida, K. Torisawa, and J. Tsujii. A method to
integrate tables of the world wide web. In Proc. 1st
International Workshop on Web Document Analysis,
pages 31{34, Seattle, WA, USA, September 2001.

250


