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Abstract. In this work, we find meaningful parameterizations of corti-
cal surfaces utilizing prior anatomical information in the form of anatom-
ical landmarks (sulci curves) on the surfaces. Specifically we generate
close to conformal parametrizations that also give a shape-based corre-
spondence between the landmark curves. We propose a variational energy
that measures the harmonic energy of the parameterization maps, and
the shape dissimilarity between mapped points on the landmark curves.
The novelty is that the computed maps are guaranteed to give a shape-
based diffeomorphism between the landmark curves. We achieve this by
intrinsically modelling our search space of maps as flows of smooth vec-
tor fields that do not flow across the landmark curves, and by using the
local surface geometry on the curves to define a shape measure. Such
parameterizations ensure consistent correspondence between anatomical
features, ensuring correct averaging and comparison of data across sub-
jects. The utility of our model is demonstrated in experiments on cortical
surfaces with landmarks delineated, which show that our computed maps
give a shape-based alignment of the sulcal curves without significantly
impairing conformality.

1 Introduction

Parametrization of the cortical surface is a key problem in brain mapping re-
search. Applications include the registration of functional activation data across
subjects, statistical shape analysis, morphometry, and processing of signals on
brain surfaces (e.g., denoising or filtering). Applications that compare surface
data often make use of surface diffeomorphisms that result from parameteriza-
tion. For the above diffeomorphisms to map data consistently across surfaces,
parametrizations are required that preserves the original surface geometry as
much as possible. Parameterizations should also be chosen so that the resulting
diffeomorphisms between surfaces align key anatomical features consistently.

Conformal mapping [1,2] is particularly convenient for genus-zero cortical
surface models since it gives a parameterization without angular distortions,
and comes with computational advantages when solving PDEs on surfaces using
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grid-based and metric-based computations [3]. However, the above parameteri-
zation is not guaranteed to map anatomical features, such as sulcal landmarks,
consistently from subject to subject [2,4].

Landmark-based diffeomorphisms [4,5,6,7,8,9] are often used to compute, or
adjust, cortical surface parameterizations. Similarly to the above works, given
two cortical surfaces with anatomical landmarks (sulci curves), we want to find
close to conformal parameterizations for the surfaces driven by shape based corre-
spondences (registration) between the curves. Our work has three main contribu-
tions; first, the surface diffeomorphism resulting from our parameterization maps
the sulcal curves exactly; second, the correspondence is shape based, i.e., maps
similarly-shaped segments of sulcal curves to each other; finally, the conformality
of the surface parameterizations is preserved to the greatest possible extent.

Optimization of surface diffeomorphisms by landmark matching has been stud-
ied intensively. Gu et al. [2] optimized the conformal parametrization by compos-
ing an optimal Möbius transformation so that it minimizes a landmark mismatch
energy. The resulting parameterization remains conformal. Glaunes et al.[6] pro-
posed to generate large deformation diffeomorphisms of the sphere onto itself,
given the displacements of a finite set of template landmarks. The diffeomorphism
obtained can match landmark features well, but it is, in general, not a confor-
mal mapping, which can be advantageous for solving PDEs on the resulting grids.
Leow et al.[7] proposed a level-set based approach for matching different types of
features, including points and 2D or 3D curves represented as implicit functions.

Tosun et al. [8] proposed a more automated mapping technique that results
in good sulcal alignment across subjects, by combining parametric relaxation,
iterative closest point registration and inverse stereographic projection. Wang et
al. [4] proposed an energy that computes maps that are close to conformal and
also driven by a landmark matching term that measures the Euclidean distance
between the specified landmarks.

Many of the above methods e.g. [4,6] require corresponding landmark points
on the surfaces to be labeled in advance. Secondly, the landmark match mea-
sures used above are based on Euclidean distance, or overlap of level set functions
representing the landmarks, and do not use shape information to guide corre-
spondences of features within curves. So, the resulting correspondences would be
unreliable in the case of landmark curves that differ by non-rigid deformations.
Finally, constraining the surface diffeomorphism to exactly align the landmark
curves during minimization is difficult, e.g. [4,8].

To resolve the above issues, we propose a method to optimize the confor-
mal parameterization of the surfaces while non-rigidly registering the landmark
curves. Specifically, we formulate our problem as a variational energy defined on
a search space of diffeomorphisms generated as flows of smooth vector fields. The
vector fields are restricted only to those that do not flow across the landmark
curves (to enforce exact landmark correspondence). Our energy has 2 terms:
(1) a shape term to map similar shaped segments of the landmark curves to
each other, and (2) a harmonic energy term to optimize the conformality of the
parametrization maps.
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2 Model

Given two cortical surfaces M1 and M2, with sulcal landmark curves Ĉ1 and Ĉ2
labeled on them. The curves Ĉi have the same topology relative to Mi. These
landmarks curves can be detected automatically by the automatic landmark
tracking technique introduced by Lui et al. [10]. Here, we want to find diffeo-
morphisms f̂1 : Ω ⊂ �2 → M1, f̂2 : Ω → M2 such that f̂2 o f̂−1

1 |Ĉ1
is a shape

based diffeomorphism onto Ĉ2, i.e f̂2 o f̂−1
1 maps similarly shaped segments of

Ĉ1 and Ĉ2 to each other. Also we want f̂i to be as conformal as possible.
To simplify our computations, Mi are firstly conformally parameterized onto

the conformal parameter domain Di. Assume that Ĉi are mapped to Ci on
the parameter domain Di. Thus, our problem is reduced to the 2D problem of
finding diffeomorphism f̃i : Ω → Di such that f̃2 o f̃−1

1 |C1 = C2 is a shape-
based diffeomorphism onto C2. We propose our problem as the minimization of
a variational energy with respect to diffeomorphisms f̃i : Ω → Di, subject to
the correspondence constraint f̃2 o f̃−1

1 (C1) = C2. The energy consists of two
terms. The first term measures the harmonic energy of the maps f̃i, and the
second term measures the shape dissimilarity between C1 and f̃2 o f̃−1

1 (C1).
To handle the above correspondence constraint, we move all our computa-

tions to the parameter domain Ω using initial diffeomorphisms f0,i : Ω → Di.
Let C ⊂ Ω be a topological representative of Ci, with f0,i(C) = Ci. With the
above framework, the energy is formulated over Ω, and the search space of dif-
feomorphisms f̃i : Ω → Di, subject to f̃2 o f̃−1

1 (C1) = C2, can be constructed as
time-1 flows of smooth vector fields on Ω that do not flow across C. For the shape
term, we measure the shape dissimilarity between the corresponding landmarks
which minimizes the difference in geodesic curvatures on the corresponding pairs
of points on C1 and C2. We discuss the details in the following sections.

2.1 Formulation

The initial diffeomorphisms f0,i give us a convenient way to perform our compu-
tations on the domain Ω. Diffeomorphisms f̃i : Ω → Di with f̃2 o f̃−1

1 (C1) = C2
can be realized through unique diffeomorphisms fi : Ω → Ω with fi(C) = C,
satisfying f̃i = f0,i o fi (Fig. 1(left)). Thus we formulate our problem as the
minimization of the following energy over diffeomorphisms fi : Ω → Ω with
fi(C) = C. Denote f̃i = f0,i o fi, F = [f̃1, f̃2],

E[f1, f2] =
∫

Ω

|∇f̃1|2 + |∇f̃2|2 dx + λ

∫
C

(
κ1(f̃1) − κ2(f̃2)

)2 |Fx ∧ Fy | ds (1)

The first term is the harmonic energy of f̃i. The second term is a symmet-
ric shape term defined as an arc length integral over F (C), similar to Thiru-
venkadam et al. [11]. Here, the shape measure κi(pi) is determined by the
geodesic curvature of Mi corresponding to the point pi. Defining the symmetric
shape measure over F (C) makes the term independent of the choice of the initial
maps f0,i, and also avoids local minima problems that occur while matching flat
curve segments.
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Fig. 1. The left panels show the framework of our algorithm. The right panel shows
the level set representation for C (Brown open curve), C = {φ = 0} ∩ A. A is the
shaded region, {φ = 0} is the circle.

In the above energy, using a search space of diffeomorphisms fi : Ω → Ω, and
then imposing fi(C) = C as a constraint during minimization is difficult. Hence
we propose a method to directly consider a reduced search space of diffeomor-
phisms fi : Ω → Ω that satisfy fi(C) = C.

2.2 Level Set Representation for C

Since we are dealing with the sulcal curves as our landmarks, we assume that
C = ∪N

k=1Γk, a union of open curves Γk ⊂ Ω. We represent C implicitly in level
set form to be able to write the second integral in energy (1) with respect to x.
Being the union of open curves, C can be represented as the intersection of the
0-level set of a signed distance function φ, and a region A (Fig. 1(right)). Then
the arc length integral of C becomes∫

C

ds =
∫

Ω

χA |∇H(φ)| dx,

where H(t) is a regularized version of the Heaviside function.

2.3 Modelling the Search Space for fi

To construct an appropriate search space for fi, we consider smooth vector fields,
Xi = ai

∂
∂x + bi

∂
∂y , where ai, bi : Ω → � are C1 functions with compact support.

Then the flow of Xi, ΦXi(x, t) is given by the differential equation,

∂Φ

∂t

Xi

(x, t) = Xi(ΦXi(x, t)),

ΦXi(x, 0) = x.

Then the time-1 flow ΦXi(x, 1) : Ω → Ω is a diffeomorphism.



498 L.M. Lui et al.

Now let n := δ̃(φ) χ̃A∇φ, for regularized versions δ̃, χ̃A of the Dirac-δ function,
and χA. We see that n coincides with the unit-normal vector field on C. Let ηep

be a smooth function on Ω such that ηep = 0 at the endpoints of the open curves
Γk ⊂ C, k = 1, 2, ..N . Consider the vector fields Y i that do not flow across C,

Y i = PCXi := ηep

(
Xi − (Xi · n)ni

)
.

We notice the following properties for the time-1 flow, ΦY i(., 1),

– ΦY i(., 1) : Ω → Ω is a diffeomorphism since Y i is C1.
– Also Y i|C is a C1 vector field on C. Thus ΦY i(., 1)|C is a diffeomorphism

onto C.

Hence it is natural to set fi = ΦY i(., 1).

2.4 Energy

We formulate the energy (1) over the space of C1 smooth vector fields on Ω,
Xi = ai

∂
∂x + bi

∂
∂y ,

J [ai, bi] =∫
Ω

|∇f̃1|2 + |∇f̃2|2 dx + λ

∫
Ω

χA

(
κ1(f̃1) − κ2(f̃2)

)2 |∇H(φ)| |Fx ∧ Fy | dx

+β

∫
Ω

|DX1|2 + |DX 2|2 dx (2)

Here, as before f̃i = f0,i o fi, and fi = ΦY i(., 1), the time-1 flow of the vector
field Y i = PCXi. The last integral in the energy is the smoothness term for the
vector fields Xi. To minimize the above energy, we can iteratively modify the
vector field Xi by the following Euler-Lagrange equation:

dai

dt
=

∫ 1

0
Bi(φY i

s ) Ψi(φY i
s , 1) Ψ−1

i (φY i
s , s) PCe1 |DφY i

s | ds − βΔai

dbi

dt
=

∫ 1

0
Bi(φY i

s ) Ψi(φY i
s , 1) Ψ−1

i (φY i
s , s) PCe2 |DφY i

s | ds − βΔbi,

where: Bi := −Δf̃i Df0,i + λχA

(
(−1)i−1(κ1(f̃1)−κ2(f̃2)

)
∇κi−∇·Ci

)
Df0,i |∇H(φ)|;

Ψi is the orthogonal fundamental matrix for the homogeneous system of

∂

∂t
Pi(x, t) = ηPCe1 (ΦY i(x, t)) + DY i(ΦY i(x, t)) Pi(x, t), Pi(x, 0) = 0.

3 Experimental Results

We have tested our automatic landmark tracking algorithm on cortical hemi-
spheric surfaces extracted from brain MRI scans, acquired from normal subjects
at 1.5 T (on a GE Signa scanner). Experimental results show that our algorithm
can effectively compute cortical surface parameterizations that align the land-
mark features in a way that also enforces shape correspondence, while preserving
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Fig. 2. The figure shows two different cortical surfaces with sulcal landmarks

the conformality of the surface-to-surface mapping to the greatest extent possi-
ble. The computed map is guaranteed to be a diffeomorphism because the map
is formulated as the integral flow of a smooth vector field.

Figure 2 shows two different cortical surfaces with sulcal landmarks labeled on
them. We seek parameterizations of these surfaces that align the landmark fea-
tures consistently while optimally preserving conformality. A diffeomorphism be-
tween the two surfaces is then obtained by computing the composition of the two
parameterizations. Figure 3 shows the result of matching the cortical surfaces with
one landmark labeled (for purposes of illustration) on each brain. Figure 3(A)
shows the cortical surface of Brain 1. It is mapped to the cortical surface of Brain
2 under the conformal parameterization as shown in Figure 3(B). Note that the
sulcal landmark on Brain 1 is only mapped approximately to the sulcal region on
Brain 2. It is not mapped exactly to the corresponding sulcal landmark on Brain
2. Figure 3(C) shows the matching result under the parameterization we propose
in this paper. Note that the corresponding landmarks are mapped exactly. Also,
the correspondence between the landmark curves follows the shape information.

Fig. 3. This figure shows the result of matching the cortical surfaces with one landmark
labeled. (A) shows the surface of Brain 1. It is mapped to Brain 2 under conformal
parameterization, as shown in (B). (C) shows the result of matching using our proposed
algorithm. (D) and (E) show the standard 2D parameter domains for Brain 1 and Brain
2 respectively.
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Fig. 4. Illustration of the result of matching the cortical surfaces with several sulcal
landmarks. (A) shows the brain surface 1. It is mapped to brain surface 2 under the
conformal parameterization as shown in (B). (C) shows the result of matching under
our proposed parameterization.

Fig. 5. The left shows the histogram of g12 = g21 of the brain surface under the
parameterization computed with our algorithm. The right shows the shape energy at
different iterations.

It maps the secondary features of one landmark curve to the secondary features
of the other landmark curve (See the black dots). Figure 3(D) and (E) show the
standard 2D parameter domain of Brain 1 and Brain 2 respectively. The landmark
curve is mapped to same horizontal line and the shape feature are mapped to the
same positions (see the black dots). This is advantageous as the surface average
of many subjects would retain features that consistently occur on sulci, while uni-
form speed parameterizations may cause these features to cancel out. Figure 4
gives an illustration of the matching results for cortical surfaces with several sul-
cal landmarks labeled on them. Figure 4(A) shows the brain surface 1 with several
landmarks labeled. It is mapped to brain surface 2 under the conformal param-
eterization as shown in Figure 4(B). Again, the sulcal landmarks on Brain 1 are
only mapped approximately to the sulcal regions on Brain 2. Figure 4(C) shows
the matching result under the parameterization we proposed. The corresponding
landmarks are mapped exactly. Also, the correspondence between the landmark
curves follows the shape information (corners to corners [See the black dot]). To
examine the conformality of the parameterization, we show in Figure 5(Left) the
histogram of g12 = g21 of the Riemannian metric under the parameterization com-
puted with our proposed algorithm. Observe that g12 = g21 are very close to zero
at most vertices. This means that the Riemannian metric is a diagonal matrix,
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thus the parameterization computed is very close to conformal. It also shows that
conformal map being intrinsic to global surface geometry, is not significantly af-
fected by small changes in the local geometry induced by the shape term. Figure
5(Right) shows that the shape energy is decreasing with iterations, implying an
improving shape based correspondence between the landmark curves.

4 Conclusion and Future Work

In this paper, we developed an algorithm to find parametrizations of the corti-
cal surfaces that are close to conformal and also give a shape based correspon-
dence between embedded landmark curves. We propose a variational approach
by minimizing an energy that measures the harmonic energy of the parameteriza-
tion maps, and the shape dissimilarity between mapped points on the landmark
curves. The parameterizations computed are guaranteed to give a shape-based
diffeomorphism between the landmark curves. Experimental results show that
our algorithm can effectively compute parameterizations of cortical surfaces that
align landmark features consistently with shape correspondence, while preserv-
ing the conformality as much as possible. As future work, we plan to apply this
algorithm to cortical models from healthy and diseased subjects to build popu-
lation shape averages. The enforcement of higher-order shape correspondences
may allow subtle but systematic differences in cortical patterning to be detected,
for instance in neurodevelopmental disorders such as Williams syndrome, where
the scope of cortical folding anomalies is of great interest but currently unknown.
Another area of interest is to work on better numerical schemes to improve com-
putational efficiency and accuracy.
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