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Abstract. In this paper, we present algorithms to automatically de-
tect and match landmark curves on cortical surfaces to get an optimized
brain conformal parametrization. First, we propose an automatic land-
mark curve tracing method based on the principal directions of the lo-
cal Weingarten matrix. Our algorithm obtains a hypothesized landmark
curves using the Chan-Vese segmentation method, which solves a Par-
tial Differential Equation (PDE) on a manifold with global conformal
parameterization. Based on the global conformal parametrization of a
cortical surface, our method adjusts the landmark curves iteratively on
the spherical or rectangular parameter domain of the cortical surface
along its principal direction field, using umbilic points of the surface as
anchors. The landmark curves can then be mapped back onto the cortical
surface. Experimental results show that the landmark curves detected by
our algorithm closely resemble these manually labeled curves. Next, we
applied these automatically labeled landmark curves to generate an opti-
mized conformal parametrization of the cortical surface, in the sense that
homologous features across subjects are caused to lie at the same param-
eter locations in a conformal grid. Experimental results show that our
method can effectively help in automatically matching cortical surfaces
across subjects.

1 Introduction

Parametrization of the cortical surfaces is an important process in the brain map-
ping research for data comparison. In this paper, we propose an automatic way
to parametrize the cortical surface that matches important anatomical features.
Important anatomical features on the cortical surface are usually represented
by landmark curves, called sulcal/gyral curves. It is extremely time-consuming
to label these landmark curves manually, especially when large dataset must be
analyzed. We therefore propose an algorithm to detect these feature curves au-
tomatically. Given a global conformal parametrization of the cortical surface, we
fix two endpoints, called the anchor points, based on umbilic points of the curva-
ture field. We then trace the landmark curve by iteratively adjusting its path in
the spherical or rectangular parameter domain of the cortex, along one of the two

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4191, pp. 308–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Landmark-Based Brain Conformal Parametrization 309

principal direction fields. Using the parameterization, the landmark curves can
be mapped back onto the cortical surface in 3D. To speed up the iterative scheme,
we propose a method to obtain a good initialization by extracting high curvature
regions on the cortical surface using the Chan-Vese segmentation method [1].
This involves solving a PDE (Euler-Lagrange equation) on the cortical manifold
using the global conformal parametrization. Finally, we use these automatically
labelled landmark curves to create an optimized brain conformal mapping, which
can match important anatomical features across subjects. This is based on the
minimization of a combined energy functional Enew = Eharmonic + λElandmark.

2 Previous Work

Automatic detection of sulci landmark curves on the brain has been widely
studied by different research groups. Prince et al. [2] proposed a method for au-
tomated segmentation of major cortical sulci on the outer brain boundary. This
is based on a statistical shape model, which includes a network of deformable
curves on the unit sphere, seeks geometric features such as high curvature re-
gions, and labels such features via a deformation process that is confined within
a spherical map of the outer brain boundary. Lohmann et al. [3] proposed an
algorithm that can automatically detect and attribute neuroanatomical names
to the cortical folds using image analysis methods applied to magnetic resonance
data of human brains. The sulci basins are segmented using a region growing
approach. Zeng et al. [4] proposed a method to automatic intrasulcal ribbon
finding, by using the cortex segmentation with coupled surfaces via a level set
method, where the outer cortical surface is embedded as the zero level set of a
high-dimensional distance function.

Optimization of surface diffeomorphisms by landmark matching has been
studied intensively. Gu et al. [5] proposed to optimize the conformal parametriza-
tion by composing an optimal Möbius transformation so that it minimizes the
landmark mismatch energy. The resulting parameterization remains conformal.
Joan et al. [6] proposed to generate large deformation diffeomorphisms of the
sphere onto itself, given the displacements of a finite set of template landmarks.
The diffeomorphism obtained can match the geometric features significantly but
it is, in general, not a conformal mapping. Leow et al. [7] proposed a level set
based approach for matching different types of features, including points and 2D
or 3D curves represented as implicit functions. Cortical surfaces were flattened to
the unit square. Nine sulcal curves were chosen and represented by the intersec-
tion of two level set functions They were used to constrain the warp of one cortical
surface onto another. The resulting transformation was interpolated using a large
deformation momentum formulation in the cortical parameter space, generaliz-
ing an elastic approach for cortical matching developed in Thompson et al. [8].

3 Basic Mathematical Theory

Firstly, a diffeomorphism f : M → N is a conformal mapping if it preserves
the first fundamental form up to a scaling factor (the conformal factor).
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Mathematically, this means that ds2M = λf∗(ds2N ), where ds2M and ds2N are the
first fundamental form on surfaces M and N , respectively and λ is the conformal
factor [9].

Next, the normal curvature κn of a Riemann surface in a given direction is
the reciprocal of the radius of the circle that best approximates a normal slice of
the surface in that direction, which varies in different directions. It follows that:
κn = vT

IIv = vT

(
e f
f g

)
v for any tangent vector v. II is called the Weingarten

matrix and is symmetric. Its eigenvalues and eigenvectors are called principal
curvatures and principal directions respectively. The sum of the eigenvalues is
the mean curvature. A point on the Riemann surface at which the Weingarten
matrix has the same eigenvalues is called an umbilic point [10].

Fig. 1. Left: Conformal parametrization of the cortical surface onto the 2D rectangle.
Right: A single face (triangle) of the triangulated mesh.

4 Computation of Conformal Parameterization

It is well known that any genus zero Riemann surfaces can be mapped confor-
mally to a sphere. For the diffeomorphism between two genus zero surfaces, we
can get a conformal map by minimizing the harmonic energy [5]. For high genus
surfaces, Gu et al. [11] proposed an efficient approach to parameterize surfaces
conformally using a set of connected 2D rectangles. They compute a holomorphic
1-form on the Riemann surface, using concepts from homology and cohomology
group theory, and Hodge theory. (See Figure 1 left , [12])

5 Algorithm for Automatic Landmark Tracking

In this section, we discuss our algorithm for automatic landmark tracking.

5.1 Computation of Principal Direction Fields from the Global
Conformal Parametrization

Denote the cortical surface by C. Let φ : D → C be the global conformal
parametrization of C where D is a rectangular parameter domain. Let λ be the
conformal factor of φ. Similar to Rusinkiewicz’s work [13], we can compute the
principal directions, and represent them on the parameter domain D. This is
based on the following three steps:
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Step 1 : Per − Face Curvature Computation

Let u =

( 1√
λ

0

)
and v =

(
0
1√
λ

)
be the directions of an orthonormal coordinate

system for the tangent plane (represented in the parameter domain D). We can
approximate the Weingarten matrix II for each face (triangle). For a triangle with
three well-defined directions (edges) together with the differences in normals in
those directions (Refer to Figure 1 right), we have a set of linear constraints on
the elements of the Weingarten matrix, which can be determined using the least
square method.

Step 2 : Coordinate system Transformation
After we compute the Weingarten matrix on each face in the (uf , vf ) coordinate
system, we can average it with contributions from adjacent triangles. This can be
done by transforming the Weingarten matrix tensor into the vertex coordinate
frame.

Step3 : Weighting
For each face f which is adjacent to the vertex p, we take the weighting wf,p
to be the area of f divided by the squares of the lengths of the two edges that
touch the vertex p.

Fig. 2. Left :Sulcal curve extraction on the cortical surface by Chan-Vese segmenta-
tion. Right : Umbilic points are located on each sulci region, which are chosen as the
end points of the landmark curves.

5.2 Variational Method for Landmark Tracking

Given the principal direction field
−→
V (t) with smaller eigenvalues on the cortical

surface C, we propose a variational method to trace the sulcal landmark curve
iteratively, after fixing two anchor points (a & b) on the sulci. Let φ : D → C
be the conformal parametrization of C, < ·, · > to be its Riemannian metric and
λ to be its conformal factor. We propose to locate a curve −→c : [0, 1] → C with
endpoints a and b, that minimizes the following energy functional:

Eprincipal(
−→c ) =

∫ 1

0
|

−→c ′
√

< −→c ′, −→c ′ >M

− −→
V ◦ −→c |2M dt =

∫ 1

0
|

−→γ ′

|−→γ ′|
− −→

G(−→γ )|2dt
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where −→γ = −→c ◦φ−1 : [0, 1] → D is the corresponding iteratively defined curve on the
parameter domain; −→

G(−→γ ) =
√
λ(−→γ )

−→
V (−→γ ); | · |2M =< ·, · >M and | · | is the (usual) length

defined on D. By minimizing the energy E, we minimize the difference between
the tangent vector field along the curve and the principal direction field −→

V . The
resulting minimizing curve is the curve that is closest to the curve traced along
the principal direction. We can locate the landmark curves iteratively using the
steepest descent algorithm.

5.3 Landmark Hypothesis by Chan-Vese Segmentation

In order to speed up the iterative scheme, we decided to obtain a good initial-
ization by extracting the high curvature regions on the cortical surface using the
Chan-Vese (CV) segmentation method [1,14]. We can extend the CV segmenta-
tion on R

2 to any arbitrary Riemann surface M such as the cortical surface.
We propose to minimize the following energy functional:

F (c1, c2, ψ) =

∫
M

(u0 − c1)
2
H(ψ)dS +

∫
M

(u0 − c2)
2
(1 −H(ψ))dS + ν

∫
M

|∇MH(ψ)|MdS,

where ψ : M → R is the level set function and | · |M =
√
< ·, · >. The

Euler-Lagrange equation becomes:
∂ζ

∂t
= λδ(ζ)[ ν

1

λ
� ·(

√
λ

∇ζ
||∇ζ|| ) − (w0 − c1)

2
+ (w0 − c2)

2
]

Now, the sulcal landmarks on the cortical surface lie at locations with relatively
high curvature. To formulate the CV segmentation, we can consider the inten-
sity term as being defined by the mean curvature. Sulcal locations can then be
circumscribed by first extracting out the high curvature regions. Fixing two an-
chor points inside the extracted region, we can get a good initialization of the
landmark curve by looking for a shortest path inside the region that joins the

Fig. 3. Automatic landmark tracking using a variational approach. Left : we trace the
landmark curves on the parameter domain along the edges whose directions are closest
to the principal direction field, which gives a good initial guess of the landmark curve.
Landmarks curve is then evolved to a deeper region using our variational approach.
Right : Ten sulci landmarks are automatically traced using our algorithm.
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two points. Also, we can consider the umbilic points inside the region as anchor
points. By definition, an umbilic point on a manifold is a location where the two
principal curvatures are the same. Therefore, we can fix the anchor points inside
the region by extracting regions with a small difference in principal curvatures.

6 Optimization of Brain Conformal Parametrization

In brain mapping research, cortical surface data are often mapped conformally to
a parameter domain such as a sphere, providing a common coordinate system for
data integration [5,15,16]. As an application of our automatic landmark track-
ing algorithm, we use the automatically labelled landmark curves to generate
an optimized conformal mapping on the surface, in the sense that homologous
features across subjects are caused to lie at the same parameter locations in
a conformal grid. This matching of cortical patterns improves the alignment of
data across subjects. This is done by minimizing the compound energy functional
Enew = Eharmonic+λElandmark, where Eharmonic is the harmonic energy of the
parameterization and Elandmark is the landmark mismatch energy. Here, auto-
matically traced landmark (continuous) curves are used and the correspondence
are obtained using the unit speed reparametrization.

Suppose C1 and C2 are two cortical surfaces we want to compare. We let
f1 : C1 → S2 be the conformal parameterization of C1 mapping it onto S2. Let
{pi : [0, 1]→S2} and {qi : [0, 1]→S2} be the automatic labelled landmark curves,
represented on the parameter domain S2 with unit speed parametrization, for
C1 and C2 respectively. Let h : C2 → S2 be any homeomorphism from C2

onto S2. We define the landmark mismatch energy of h as: Elandmark(h) =
1/2

∑n
i=1

∫ 1

0
||h(qi(t))−f1(pi(t))||2dt, where the norm represents distance on the

sphere. By minimizing this energy functional, the Euclidean distance between
the corresponding landmarks on the sphere is minimized.

Fig. 4. Left : The value of Eprincipal at each iteration is shown. Energy reached its
steady state with 30 iterations, meaning that our algorithm is efficient using the CV
model as the initialization. Right : Numerical comparison between automatic labelled
landmarks and manually labelled landmarks by computing the Euclidean distance
Edifference (on the parameter domain) between the automatically and manually la-
belled landmark curves.
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Fig. 5. Optimization of brain conformal mapping using automatic landmark tracking.
In (A) and (B), two different cortical surfaces are mapped conformally to the sphere.
In (C), we map one of the cortical surface to the sphere using our algorithm. (D),
(E), (F) shows the average map of the optimized conformal parametrization using the
variational approach with the automatically traced landmark curves. Observed that
the important sulci landmarks are clearly shown.

7 Experimental Results

In one experiment, we tested our automatic landmark tracking algorithm on a
set of left hemisphere cortical surfaces extracted from brain MRI scans, acquired
from normal subjects at 1.5 T (on a GE Signa scanner). In our experiments, 6
landmarks were automatically located on cortical surfaces.

Figure 2(left), shows how we can effectively locate the initial landmark guess
areas on the cortical surface using the Chan-Vese segmentation. Notice that
the contour evolved to the deep sulcal region. In Figure 2(right), we locate the
umbilic points in each sulcal region, which are chosen as the anchor points.

Our variational method to locate landmark curves is illustrated in Figure 3.
With the initial guess given by the Chan-Vese model (we choose the two extreme
points in the located area as the anchor points), we trace the landmark curves
iteratively based on the principal direction field. In Figure 3 (left), we trace the
landmark curves on the parameter domain along the edges whose directions are
closest to the principal direction field. The corresponding landmark curves on
the cortical surface is shown. Figure 3 (left) shows how the curve evolves to
a deeper sulcal region with our iterative scheme. In Figure 3 (right), ten sulci
landmarks are located using our algorithm. Our algorithm is quite efficient with
the good intial guess using the CV-model. (See Fig 4 left)

To compare our automatic landmark tracing results with the manually labeled
landmarks, we measured the Euclidean distance Edifference (on the parameter
domain) between the automatically and manually labelled landmark curves. Fig-
ure 4(right) shows the value of Edifference at different iterations for different
landmark curves. Note that the value becomes smaller as the iterations pro-
ceed. This means that the automatically labeled landmark curves more closely
resemble those defined manually as the iterations continue.

Figure 5 illustrates the application of our automatic landmark tracking algo-
rithm. We illustrated our idea of the optimization of conformal mapping using
the automatically traced landmark curves. Figure 5 (a) and (b) show two differ-
ent cortical surfaces being mapped conformally to the sphere. Notice that the
alignment of the sulci landmark curves are not consistent. In Figure 5 (c), the
same cortical surface in (b) is mapped to the sphere using our method. Notice
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that the landmark curves closely resemble to those in (a), meaning that the
alignment of the landmark curves are more consistent with our algorithm.

To visualize how well our algorithm can improve the alignment of the impor-
tant sulci landmarks is, we took average of the 15 optimized conformal maps [14].
Figure 5 shows average maps at different angles. In (d) and (e), sulci landmarks
are clearly preserved inside the green circle where landmarks are manually la-
belled. In (f), the sulci landmarks are averaged out inside the green circle where
no landmarks are automatically detected. It means that our algorithm can help
improving the alignment of the anatomical features.

8 Conclusion and Future Work

In this paper, we propose a variational method to automatically trace landmark
curves on cortical surfaces, based on the principal directions. To accelerate the it-
erative scheme, we initialize the curves by extracting high curvature regions using
Chan-Vese segmentation. This involves solving a PDE on the cortical manifold.
The landmark curves detected by our algorithm closely resembled those labeled
manually. Finally, we use the automatically labeled landmark curves to create
an optimized brain conformal mapping, which matches important anatomical
features across subjects. Surface averages from multiple subjects show that our
computed maps can consistently align key anatomic landmarks. In future, we
will perform a more exhaustive quantitative analysis of our algorithm’s perfor-
mance, mapping errors and quantifying improved registration, across multiple
subjects, on a regional basis.
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