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Abstract. Here we propose a novel method to compute surface hy-
perbolic parameterization for studying brain morphology with the Ricci
flow method. Two surfaces are conformally equivalent if there exists a
bijective angle-preserving map between them. The Teichmüller space for
surfaces with the same topology is a finite-dimensional manifold, where
each point represents a conformal equivalence class, and the conformal
map is homotopic to the identity map. A shape index can be defined
based on Teichmüller space coordinates, and this shape index is intrin-
sic and invariant under scaling, translation, rotation, general isometric
deformation, and conformal deformation. Using the Ricci flow method,
we can conformally map a surface with a negative Euler number to the
Poincaré disk and the Teichmüller space coordinates can be computed
by geodesic lengths under hyperbolic metric. For lateral ventricular sur-
face registration, we further convert the parameterization to the Klein
model where a convex polygon is guaranteed for a multiply connected
surface. With the Klein model, diffeomorphisms between lateral ventric-
ular surfaces can be computed with some well known surface registration
methods. Compared with prior work, the parameterization does not have
any singularities and the intrinsic parameterizations help shape indexing
and surface registration. Our preliminary experimental results showed
its great promise for analyzing anatomical surface morphology.

1 Introduction

Shape analysis is a key research topic in anatomical modeling and statisti-
cal comparisons of anatomy. In studies that analyze brain morphology, many
shape analysis methods have been proposed, such as spherical harmonic analysis
(SPHARM) [1, 2], medial representations (M-reps) [3], and minimum descrip-
tion length approaches [4], etc.; these methods may also be applied to analyze
shape changes or abnormalities in subcortical brain structures. Recent work
has also taken a population based approach by analyzing surface changes using
pointwise displacements of surface meshes, local deformation tensors, or surface
expansion factors [5, 6]. Even so, a stable method to compute transformation-
invariant shape descriptors and diffeomorphisms between topology complicated
surfaces would be highly advantageous in this research field. Here we propose a
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novel and intrinsic method to compute hyperbolic conformal parameterization of
surfaces with negative Euler numbers with hyperbolic Ricci flow method. We use
lateral ventricular morphometry as an example to demonstrate our algorithm in
a dataset from our prior research [7, 8].

All oriented surfaces have conformal structures. The conformal structure is,
in some respects, more flexible than the Riemannian metric but places more
restrictions on the surface morphology than the topological structure. Accord-
ing to Klein’s Erlangen program, different geometries study the invariants under
different transformation groups. Conformal geometry corresponds to the angle-
preserving transformations. If there exists a conformal map between two surfaces,
they are conformally equivalent. All surfaces may be classified by the conformal
equivalence relation. For surfaces with the same topology, the Teichmüller space
is a natural finite-dimensional manifold, where each point represents a conformal
equivalence class and the distance between two shapes can be accurately mea-
sured. A shape index can be defined based on Teichmüller space coordinates.
This shape index is intrinsic and invariant under conformal transformations,
rigid motions and scaling. It is simple to compute; no surface registration is
needed. It is very general; it can handle all arbitrary topology surfaces with
negative Euler numbers.

In this work, only genus-zero surfaces with three boundaries are considered.
With the discrete version of the surface Ricci flow method (also called the discrete
Ricci flow), we conformally projected the surfaces to the hyperbolic plane and
isometrically embedded them in the Poincaré disk. The proposed Teichmüller
space coordinates are the lengths of a special set of geodesics under this spe-
cial hyperbolic metric. Next, we computed the Klein model of the hyperbolic
parameterization. The obtained convex polygon provides a stable parameter do-
main for surface registration. Compared with prior work [8], the new registration
method relies on surface intrinsic features and does not have any singularities.
It provides a promising way to analyze complex ventricular morphometry using
MR images.

We tested our algorithm on cortical and lateral ventricular surfaces extracted
from 3D anatomical brain MRI scans. The proposed algorithm can map the
profile of differences in surface morphology between healthy controls and subjects
with HIV/AIDS. Finally, we applied our algorithm to compare the intrinsic
features of two ventricular surfaces with strong shape difference to demonstrate
the feasibility of applying the new method for surface registration.

1.1 Related Work

In the computational analysis of brain anatomy, volumetric measures of struc-
tures identified on 3D MRI have been used to study group differences in brain
structure and also to predict diagnosis [9, 10, 11]. However, early research [12,
13, 14, 15] has demonstrated that surface-based approaches may offer advan-
tages as a method to register brain images. To register brain surfaces, a common
approach is to compute a range of intermediate mappings to some canonical
parameter space [6, 12, 13, 16, 17, 18]. A flow, computed in the parameter space
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of the two surfaces, then induces a correspondence field in 3D [19]. This flow
can be constrained by anatomical landmark points or curves [20, 21, 22, 23, 24],
by subregions of interest [25], by using currents to represent anatomical varia-
tion [26, 27], or by metamorphoses [28]. Various ways also exist for optimizing
surface registrations [29, 30, 31, 32].

Recent work has also used shape-based features (reviewed in [33]). Many
surface based statistics were studied for evaluating disease burden, progres-
sion and response to interventions, including m-rep [3], SPHARM [2], principal
geodesic analysis [34], random orbit model [35], deformation-based morphometry
(DBM) [36, 37], tensor-based morphometry (TBM) [1, 38], Teichmüller shape
space [39, 40], Laplace-Beltrami eigen function [41], q-maps [42], and optimal
mass transportation [29], etc.

Some work has focused on conformal parameterization of brain surfaces. There
are mainly five categories of methods for brain surface study: quasiconformal
mapping with circle packing [43], Cauchy-Riemann equation [44, 45, 46], har-
monic maps [47], holomorphic differentials [48], and Ricci/Yamabe flow method
[49, 50]. Among all these algorithms, only the holomorphic differentials [48, 51],
Ricci flow methods [49, 50] and circle packing method [43] work on high genus
surfaces while circle packing method can only generate quasi-conformal mapping
(see a discussion in [50]).

With the Ricci flow method, Wang et al. [50] solved the Yamabe equation and
conformally mapped the cortical surface of the brain to a Euclidean multi-hole
punctured disk. Gu et al. applied the surface Ricci flow method to study general
3D shape matching and registration. The hyperbolic Ricci flow has also been
applied to study 3D face matching. Recently, Jin et al. [39] and Zeng et al. [52]
introduced the Teichmüller shape space to index and compare general surfaces
with various topologies, geometries and resolutions.

2 Theoretical Background and Definitions

This section briefly introduces the theoretic background and definitions neces-
sary for the current work.

Conformal Deformation. Suppose S is a surface embedded in R
3 with a Rie-

mannian metric g induced from the Euclidean metric. Let u : S → R be a scalar
function on S. It can be verified that g̃ = e2ug is also a Riemannian metric on
S and angles measured by g are equal to those measured by g̃. Thus, g̃ is called
a conformal deformation of g.

The Gaussian curvature of the surface will also be changed accordingly and
become K̃ = e−2u(−Δgu + K), where Δg is the Laplacian-Beltrami operator

under the original metric g. The geodesic curvature will become k̃g = e−u(∂ru+
kg), where r is the tangent vector orthogonal to the boundary. According to
Gauss-Bonnet theorem, the total curvature is 2πχ(S), where χ(S) is the Euler
characteristic number of S.
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Uniformization Theorem. [53]. Given a surface S with a Riemannian metric g,
there exist an infinite number of metrics conformal to g. The uniformization
theorem states that, among all conformal metrics, there exists a unique rep-
resentative, which induces constant Gaussian curvature everywhere. Moreover,
the constant will be one of {+1, 0,−1}. Therefore, we can embed the universal
covering space of any closed surface using its uniformization metric onto one
of the three canonical surfaces: the sphere S

2 for genus-0 surfaces with positive
Euler numbers, the plane E

2 for genus-1 surfaces with zero Euler number, and
the hyperbolic space H

2 for high genus surfaces with negative Euler numbers.
Accordingly, we can say that surfaces with positive Euler number admit spheri-
cal geometry; surfaces with zero Euler number admit Euclidean geometry; and
surfaces with negative Euler number admit hyperbolic geometry.

Poincaré Disk Model. In this work, we specify the background geometry of all
surfaces as the hyperbolic space H

2. The hyperbolic space cannot be realized in
R

3, thus we use the Poincaré disk to model it. The Poincaré disk is the unit disk
|z| < 1 in the complex plane with the metric ds2 = 4dzdz̄

(1−zz̄)2 . The rigid motion

in hyperbolic space is the Möbius transformation z → eiθ z−z0
1−z̄0z

, where θ and z0
are parameters. The geodesics on the Poincaré disk are arcs of Euclidean circles,
which intersect the boundary of the the unit circle at right angles.

Hyperbolic Ricci Flow. In this work we use the surface Ricci flow method to
conformally project the surfaces to the hyperbolic plane and isometrically embed
them in the Poincaré disk. We call this method hyperbolic Ricci flow.

Let S be a smooth surface with a Riemannian metric g = (gij). The Ricci
flow deforms the metric g(t) according to the Gaussian curvature K(t),

dgij(t)

dt
= −2K(t)gij(t),

where t is the time parameter. With g(t) = e2u(t)g(0), the Ricci flow can be
simplified as

du(t)

dt
= −2K(t).

Fuchsian Transformation. Suppose S is a surface with a negative Euler number
and its hyperbolic uniformization metric is g̃. Then its universal covering space
(S̃, g̃) can be isometrically embedded in H

2. Any deck transformation of S̃,
which is a transformation from one universal covering space to another and
keeps projection invariant, is a Möbius transformation and called a Fuchsian
transformation. Let φ be a Fuchsian transformation, let z ∈ H

2, the attractor and
repulser of φ are limn→∞ φn(z) and limn→∞ φ−n(z), respectively. The axis of φ is
the unique geodesic through its attractor and repulser. The deck transformation
group is called the Fuchsian group of S.

Fig. 1 (a) and (b) illustrate some basic concepts in hyperbolic geometry. (a)
shows a saddle-shape plane which has constant negative Gaussian curvatures.
(b) shows Escher’s famous prints Circle Limit III [54], where the white lines are
close to geodesics, i.e. hypercycles, on the Poincaré disk.
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Fig. 1. Some simple illustrations of hyperbolic geometry. (a) a saddle-shape plane
with constant negative Gaussian curvatures. (b) Escher’s prints Circle Limit III [54].
(c) a pair of hyperbolic pants. (d) conformal transformation between two hyperbolic
triangles.

Teichmüller Space. Let (S1,g1) and (S2,g2) be two metric surfaces, and let
f : S1 → S2 be a differential map between them. If the pull-back metric induced
by f satisfies the following condition:

g1 = e2λf∗g2,

then we say the map is conformal. Two metric surfaces are conformally equiva-
lent, if there exists an invertible conformal map between them. All surfaces may
be classified using this conformal equivalence relation.

All conformal equivalence classes of surface with a fixed topology form a
finite-dimensional manifold, the so-called Teichmüller space. Teichmüller space
is a shape space, where a point represents a class of surfaces, and a curve in
Teichmüller space represents a deformation process from one shape to the other.
The coordinates of the surface in Teichmüller space can be explicitly computed.
The Riemannian metric of The Teichmüller space is also well-defined.

As an example, Fig. 1 (c) shows a genus-zero surface with three boundaries
∂S = {γ1, γ2, γ3}, which is also called topological pants. If the length of bound-
ary γi is li under the hyperbolic uniformization metric, then (l1, l2, l3) are the
Teichmüller coordinates of S in the Teichmüller space of all conformal classes of
a pair of pants. Namely, if two surfaces share the same Teichmüller coordinates,
they can be conformally mapped to each other. In this work, only surfaces with
the pants topology are considered.
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Fig. 2. Illustration of computation of hyperbolic conformal parameterization of a left
cortical surface with Ricci flow method.

Klein Model. In additional to Poincaré model, there also exist other models
of hyperbolic space. Another commonly used one is the Klein model [55]. The
Klein model is also the unit disk, where all geodesics are straight Euclidean
lines. The obtained convex polygon simplifies the computation and provides a
convex domain for further surface registration methods. The conversion from the
Poincaré disk to the Klein model is

z → 2z

1 + z̄z
(1)

The Poincaré model is conformal, whereas the Klein model is not. In our Poincaré
model, we compute the shortest lines between two hyperbolic lines. The lines are
unique because they are the geodesics on the hyperbolic space. So the converted
Klein model is convex and uniquely determined by the intrinsic surface shape.
It provides a practical and efficient domain for us to compute diffeomorphisms
between topology complicated surfaces.

3 Computational Algorithms

This section details the algorithms for computing the hyperbolic metric, the
Teichmüller coordinates and surface diffeomorphisms via the hyperbolic param-
eterization.
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3.1 Computing Hyperbolic Metric of a Surface with the Ricci Flow
Method

In practice, most surfaces are approximated by discrete triangular meshes. Let
M be a two-dimensional simplicial complex. We denote the set of vertices, edges
and faces by V,E, F , respectively. We call the ith vertex vi; edge [vi, vj ] runs
from vi to vj ; and the face [vi, vj , vk] has its vertices sorted counter-clockwise.
In this work, we assume all faces are hyperbolic triangles. Fig. 1 (d) illustrates
the conformal transformation between a pair of hyperbolic triangles and their
associated edge lengths li, yi, corner angles θi and conformal factor ui.

A discrete metric is a function l : E → R
+, such that triangle inequality

holds on every face, which represents the edge lengths. The discrete curvature
K : V → R is defined as the angle deficit, i.e., 2π minus the surrounding corner
angles for an interior vertex, and π minus the surrounding corner angles for a
boundary vertex.

Suppose the mesh is embedded in R
3, so it has the induced Euclidean metric.

We use l0ij to denote the initial induced Euclidean metric on edge [vi, vj ].
Let u : V → R be the discrete conformal factor. The discrete conformal metric

deformation is defined as

sinh(
yk
2
) = eui sinh(

lk
2
)euj . (2)

The discrete Ricci flow is defined as

dui

dt
= −Ki, (3)

where Ki is the curvature at the vertex vi.
Let u = (u1, u2, · · · , un) be the conformal factor vector, where n is the number

of vertices, and u0 = (0, 0, · · · , 0). Then the discrete hyperbolic Yamabe energy
is defined as

E(u) =

∫ u

u0

n∑
i=1

Kidui. (4)

The differential 1-form ω =
∑n

i=1 Kidui is closed. We use ck to denote cosh(yk).
By direct computation, it can be shown that on each triangle,

∂θi
∂uj

= A
ci + cj − ck − 1

ck + 1
,

where

A =
1

sin(θk) sinh(yi) sinh(yj)
,

which is symmetric in i, j, so ∂θi
∂uj

=
∂θj
∂ui

. It is easy to see that ∂Ki

∂uj
=

∂Kj

∂ui
,

which implies dω = 0. The discrete hyperbolic Yamabe energy is convex. The
unique global minimum corresponds to the hyperbolic metric with zero vertex
curvatures.
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This requires us to compute the Hessian matrix of the energy. The explicit
form is given as follows:

∂θi
∂ui

= −A
2cicjck − c2j − c2k + cicj + cick − cj − ck

(cj + 1)(ck + 1)

The Hessian matrix (hij) of the hyperbolic Yamabe energy can be computed
explicitly. Let [vi, vj ] be an edge, connecting two faces [vi, vj , vk] and [vj , vi, vl].
Then the edge weight is defined as

hij =
∂θjki
∂uj

+
∂θlji
∂uj

.

also for

hii =
∑
j,k

∂θjki
∂ui

,

where the summation goes through all faces surrounding vi, [vi, vj , vk].
The discrete hyperbolic energy can be directly optimized using Newton’s

method. Because the energy is convex, the optimization process is stable.
Given the mesh M , a conformal factor vector u is admissible if the deformed

metric satisfies the triangle inequality on each face. The space of all admissible
conformal factors is not convex. In practice, the step length in Newton’s method
needs to be adjusted. Once the triangle inequality no longer holds on a face, then
an edge swap needs to be performed. The target hyperbolic metric computed
by the Ricci flow method can be used to isometrically embed the surface in the
Poincaré disk.

Fig. 2 (a) and (b) illustrate the hyperbolic Ricci flow method. (a) shows the
initial cortical surface with three boundaries γ1, γ2, γ3, which were cut along
specific anatomical landmarks. The curves τ1 and τ2 are the shortest paths con-
necting γ2 and γ3, γ1 and γ3, respectively. We cut the surface open along τ1
and τ2 to obtain a simply connected surface S̃. By running the hyperbolic Ricci
flow, the hyperbolic metric is obtained. With the metric, S̃ can be isometrically
embedded onto the Poincaré disk as shown in (b). The boundaries of the original
surface, γ1, γ2, γ3, map to geodesics.

3.2 Computing the Teichmüller coordinates

In order to compute the Teichmüller coordinates of a surface with the hyperbolic
metric obtained with the Ricci flow method in Sec. 3.1, we need to compute the
Fuchsian group generators of the surface. As illustrated in Fig. 2, the Möbius
transformations φ1 that transforms τ1 to τ−1

1 and φ2 that transforms τ2 to τ−1
2

form the generators of the Fuchsian group of the surface in Fig. 2 (a). In Fig.
2 (c), the embedding of S̃ is transformed by a Fuchsian transformation. Each
color represents a copy of S̃. Frame (d) shows the computation of τi’s, which are
the shortest geodesics connecting the geodesic boundaries γj and γk.

The final result is shown in Fig. 2 (e). The lengths of γ1, γ2, γ3 in the hyperbolic
space are the Teichmüller coordinates of S.
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3.3 Surface Registration with the Klein Model

After we compute the Poincaré model, we can transform the hyperbolic polygon
from the Poincaré model to the Klein model with Eqn. 1. The result is shown in
Figure 2 (f). The polygon becomes a Euclidean convex polygon. We can apply
either constrained harmonic map [8] or surface fluid registration method [56]
to compute surface registration. Both methods will generate differeomorphisms
since harmonic maps between convex planar polygons are diffeomorphisms and
the surface fluid registration method also guarantees diffeomorphisms. The reg-
istered ventricular surfaces may provide a rigorous theoretic foundation to build
ventricular atlas with population-based brain imaging approaches [5, 6].

4 Experimental Results

The lateral ventricles - fluid-filled structures deep in the brain - are often enlarged
in disease and can provide sensitive measures of disease progression [7, 57, 58, 59].
Ventricular changes reflect atrophy in surrounding structures, and ventricular
measures and surface-based maps can provide sensitive assessments of tissue
reduction that correlate with cognitive deterioration in illnesses. However, the
concave shape, complex branching topology and narrowness of the inferior and
posterior horns have made automatic analyses more difficult.

With the hyperbolic Ricci flow method, we proposed two methods to analyze
lateral ventricular morphometry: (1) to quantify lateral ventricular surface mor-
phometry with the Teichmüller shape space coordinates; (2) to register lateral
ventricular surfaces via the Klein model. In this section, we report our prelimi-
nary results on a HIV/AIDS dataset used in our prior research [7, 8].

4.1 Quantifying Lateral Ventricular Surface Morphology
with the Teichmüller Shape Space Coordinates

To model the lateral ventricular surface, we automatically locate and introduce
three cuts on each ventricle. The cuts are motivated by examining the topology of
the lateral ventricles, in which several horns are joined together at the ventricular
“atrium” or “trigone”. We call this topological model, creating a set of connected
surfaces, a topology optimization operation. After modeling the topology in this
way, a lateral ventricular surface, in each hemisphere, becomes an open boundary
surface with 3 boundaries, a topological pant surface.

After the topology optimization, a ventricular surface is topologically equiv-
alent to a topological pant surface. We can then compute its Teichmüller space
coordinate. Figure 3 illustrates how to compute Teichmüller space coordinates
for a lateral ventricle. In the figure, γ1, γ2, and γ3 are labeled boundaries and
τ1 and τ2 are the shortest geodesics between boundaries. Figure 3 (d) illustrates
the surface with the hyperbolic metric that is isometrically flattened onto the
Poincaré disk. When we make the topological change, we make sure each new
boundary has the same Euclidean length across different surface. As a result,
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Fig. 3. Illustration of hyperbolic conformal parameterization of a left lateral ventricular
surface with Ricci flow method.

the lengths of each boundary under the Poincaré disk metric are valid metrics
for studying lateral ventricular surface morphology.

In our experiments [40, 49], we compared ventricular surface models extracted
from 3D brain MRI scans of 11 individuals with HIV/AIDS and 8 control sub-
jects [7, 8]. We automatically performed topology optimization on each ven-
tricular surface and computed their lengths in the Poincaré disk by the Ricci
flow method. For each pair of ventricular surfaces, we obtained a 6 × 1 vector,
t = (t1, t2, ...t6), which consists of 3 boundary lengths for the left ventricular sur-
face and 3 boundary lengths for right ventricular surface. Given this Teichmüller
space coordinate based feature vector, we applied a nearest neighbor classifier
based on the Mahalanobis distance, which is

d(t) =
√
(t− μTc)

TΣ−1
Tc

(t− μTc) +
√
(t− μTa)

TΣ−1
Ta

(t− μTa) (5)
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where μTc , μTa , ΣTc and ΣTa are the feature vector mean and covariance for the
two groups, respectively. We classified t based on the sign of the distance of d(t),
i.e., the subject that is closer to one group mean is classified into that group.
For this data set, we performed a leave-one-out test. Our classifier successfully
classified all 19 subjects to the correct group and achieved a 100% accuracy rate.

For comparison, we also tested a nearest neighbor classifier associated with a
volume feature vector. For each pair of ventricular surface, we measured their
volumes, v = (vl, vr). We also used nearest neighbor classifier based on the
Mahalanobis distance, which is

d(v) =
√
(v − μVc)

TΣ−1
Vc

(t− μVc) +
√
(t− μVa)

TΣ−1
Va

(t− μVa) (6)

where μVc , μVa , ΣVc and ΣVa are the feature vector mean and covariance for
the two groups, respectively. We classified v based on the sign of the distance
of d(v), i. e., the subject that is closer to one group mean is classified into that
group. In the data set, we performed a leave-one-out test. The classifier based on
the simple volume measurement successfully classified only 13 out of 19 subjects
to the correct group and achieved a 68.42% accuracy rate.

Studies of ventricular morphology have also used 3D statistical maps to corre-
late anatomy with clinical measures, but automated ventricular analysis is still
difficult because of their highly irregular branching surface shape. The new Te-
ichmüller space shape descriptor requires more validation on other data sets,
these experimental results suggest that (1) ventricular surface morphology is al-
tered in HIV/AIDS; (2) volume measures are not sufficient to distinguish HIV
patients from controls; and (3) our Teichmüller space feature vector can be used
to classify control and patient subjects. Our ongoing work is studying the cor-
relation between the proposed feature vector and clinical measures (e.g., future
decline) in an Alzheimer’s Disease dataset.

4.2 Registering Lateral Ventricular Surfaces via the Klein Model

Here we report our preliminary study of applying the proposed method for reg-
istering lateral ventricular surfaces. Experiments on a pair of lateral ventricular
surfaces from two diagnostic groups showed that our method is promising for
registration of high-genus surfaces.

Fig. 4 (a) and (d) are the left ventricular surfaces from a healthy control sub-
ject and an HIV/AIDS patient, respectively. The boundaries were automatically
cut by the topology optimization operation introduced in Sec 4.1. By visual ob-
servation, it is obvious that the volume of the lateral ventricular surface of the
HIV/AIDS patient is larger than that of the control subject. This characteristic
is also represented by the corresponding Poincaré models and Klein models. Fur-
thermore, despite of the shape difference, the Klein disks of the two surface are
quite similar, which provides a promising initial condition for further registra-
tion with constrained harmonic map [8] or surface fluid registration [56]. One of
the most advantageous properties of our method over the method in [8] is that
surface conformal parameterization with the new method has no singularities.
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Fig. 4. Comparison of two different lateral ventricular surfaces and their hyperbolic
parameterizations. The Klein model parameterization provides an intrinsic and stable
domain for registration.

All surface information may be used for registration. Intuitively, more usable pa-
rameter space in the canonical space is better to match subtle surface features.
In our future work, we will apply the proposed pipeline to register high-genus
surfaces in big imaging dataset and compare our experimental results with prior
methods [8].

5 Discussion and Future Work

In this paper, we propose a stable way to compute hyperbolic conformal param-
eterization for surfaces with complicated topology structure. Given a topological
pant surface, for example, the discrete Ricci flow can be applied to embed it into
a Poincaré disk. Its Teichmüller space coordinate is calculated from the lengths
of its three boundaries under hyperbolic metric. Further, we may transform the
Poincaré disk model to Klein model, where a convex polygon is suitable to gen-
erate diffeomorphisms between high genus surfaces. We demonstrated our work
in lateral ventricle surfaces for HIV/AIDS research.

Our algorithm is based on solving elliptic partial differential equations, so
the computation is stable. The computation is also insensitive to the surface
triangular mesh quality so it is robust to the digitization errors in the 3D sur-
face reconstruction. Overall, it provides an intrinsic and stable way to compute
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surface conformal structure based shape index for further morphometry study.
Although our current work focuses on topological pant surfaces, for surfaces with
more complicated topologies, their Teichmüller coordinates and Klein model pa-
rameterizations can still be computed using the hyperbolic metric. If the surface
has Euler number χ, χ < 0, the surface can be decomposed to −χ number of
pants, where the cutting curves are also geodesics under the hyperbolic metric.
Furthermore, two pants sharing a common cutting curve can be glued together
with a specific twisting angle and it can also be converted to the polygon under
the Klein model. The lengths of all cutting geodesics and the twisting angles
associated with them form the Teichmüller coordinates of the surface. In the
future, we will further explore and validate numerous applications of the hyper-
bolic Ricci flow method in neuroimaging and shape analysis research.
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