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Abstract

In this paper, we propose multivariate tensor-based sur-

face morphometry, a new method for surface analysis, using

holomorphic differentials; we also apply it to study brain

anatomy. Differential forms provide a natural way to pa-

rameterize 3D surfaces, but the multivariate statistics of

the resulting surface metrics have not previously been in-

vestigated. We computed new statistics from the Rieman-

nian metric tensors that retain the full information in the

deformation tensor fields. We present the canonical holo-

morphic one-forms with improved numerical accuracy and

computational efficiency. We applied this framework to

3D MRI data to analyze hippocampal surface morphome-

try in Alzheimer’s Disease (AD; 12 subjects), lateral ven-

tricular surface morphometry in HIV/AIDS (11 subjects)

and biomarkers in lateral ventricles in HIV/AIDS (11 sub-

jects). Experimental results demonstrated that our method

powerfully detected brain surface abnormalities. Multivari-

ate statistics on the local tensors outperformed other TBM

methods including analysis of the Jacobian determinant, the

largest eigenvalue, or the pair of eigenvalues, of the surface

Jacobian matrix.

1. Introduction

Three-dimensional surface-based methods have been ex-

tensively used to study face recognition [11, 24], structural

features of the brain, such as cortical gray matter thickness,

complexity, and patterns of brain change over time due to

disease or developmental processes [16, 6]. Deformation-

based morphometry (DBM) [2, 5] directly uses 2D or 3D

deformations obtained from the nonlinear registration of

brain images to infer local differences in brain volume or

shape. Tensor-based morphometry (TBM) [7, 4] tends to

examine spatial derivatives of the deformation maps reg-

istering brains to common template, constructing morpho-

logical tensor maps such as the Jacobian determinant, tor-

sion or vorticity. DBM, by contrast, tends to analyze 3D

displacement vector fields encoding relative positional dif-

ferences across subjects. One advantage of TBM for sur-

face morphometry is that surfaces are commonly parame-

terized using grids from which local deformation tensors

can be naturally derived - TBM can even make use of the

Riemannian surface metric to characterize local anatomical

changes.

Using the concepts of homology and cohomology groups

for general surfaces, one can convert topological problems

to algebraic problems and use simple methods from linear

algebra to solve them. Homology is a geometric concept

and relatively easy to visualize or imagine. Cohomology is

a more analytic concept, making structures easier to com-

pute with and manipulate. In differential geometry, a holo-

morphic one-form (see below for detailed definitions) can

be represented as a pair of scalars on each edge of a discrete

mesh structure. All holomorphic one-forms form a linear

space, which is isomorphic to the first cohomology group

H1(S, R). In addition, the holomorphic one-form is an in-

trinsic, coordinate-free formulation. It provides a practical

way to induce conformal parameterizations on surfaces and

compute surface-to-surface registrations. In computational

anatomy research, Wang et al. [22] used holomorphic one-

forms to compute holomorphic flow segmentation, which

partitions branching objects into a set of connected surface

models. However, when they computed an exact harmonic

one-form’s conjugate one-form, a simple 90◦ rotation about

the surface normal was used. In general, as the estima-

tion of this surface normal was not completely accurate,

this method introduced approximation errors. Holomorphic

one-forms were also used to compute conformal slit maps

of cortical surfaces and non-rigid human face matching and

registration [21, 24].

In this paper, we present a multivariate TBM framework

and apply it to detect abnormal areas on anatomical struc-

tures in the brain represented as surfaces, parameterized us-

ing differential forms (holomorphic one-forms). Our work

has 3 major contributions.First, we propose a new multi-



variate TBM framework for surface morphometry, using

differential forms as the basis for the tensors that are an-

alyzed. Second, we proposed a more numerically stable

and computationally efficient algorithm to compute holo-

morphic one-forms. And third, we performed three empir-

ical studies of brain abnormalities in Alzheimer’s Disease

(AD), and HIV/AIDS. We studied hippocampal surface de-

formation associated with AD, and lateral ventricular sur-

face deformation associated with HIV/AIDS. The proposed

multivariate TBM detected areas of statistically significant

deformation even in a relatively small test datasets - one

compares 12 subjects with AD to a group of 14 matched

healthy controls and the other compares 11 subjects with

HIV/AIDS to 8 matched healthy controls. We also stud-

ied HIV/AIDS biomarkers based on our multivariate TBM

results on lateral ventricular surfaces. With the identified

biomarkers, we applied a leave-one-out test with Nearest

Neighbor classifier. We achieved 100% sensitivity on both

right and left surfaces and 100%, 87.5% specificity on right

and left, respectively. Our goal was to show that the pro-

posed multivariate TBM had more detection power by de-

tecting consistent but more statistically significant areas of

abnormal brain structure.

2. Theoretical Background and Definitions

Suppose S is a surface embedded in R3, with induced

Euclidean metric g. S is covered by an atlas {(Uα, φα)}.

Suppose (xα, yα) is the local parameter on the chart

(Uα, φα). We say (xα, yα) is isothermal, if the metric has

the representation g = e2λ(xα,yα)(dx2
α + dy2

α).
The Laplace-Beltrami operator is defined as

∆g =
1

e2λ(xα,yα)
(

∂2

∂x2
α

+
∂2

∂y2
α

).

A function f : S → R is harmonic, if ∆gf ≡ 0.

Suppose ω is a real differential one-form with the repre-

sentation fαdxα + gαdyα in the local parameters (xα, yα),
ω is a closed one-form, if on each chart (xα, yα), ∂f

∂yα
−

∂g
∂xα

= 0. ω is an exact one-form, if it equals the gradient

of some function. An exact one-form is also a closed one-

form. The de Rham cohomology group H1(S, R) is the

quotient group between closed one-forms and exact one-

forms. If a closed one-form ω satisfies ∂f
∂xα

+ ∂g
∂yα

= 0,

then ω is a harmonic one-form. Hodge theory claims that

in each cohomologous class, there exists a unique harmonic

one-form. The gradient of a harmonic function is an exact

harmonic one-form.

The Hodge star operator turns a one-form ω into its

conjugate ∗ω, ∗ω = −gαdxα + fαdyα. If we rewrite

the isothermal coordinates (xα, yα) in the complex format

zα = xα+iyα, then the isothermal coordinate charts form a

conformal structure on the surface. Holomorphic differen-

tial forms can be generalized to Riemann surfaces by using

the notion of conformal structure. A holomorphic one-form

is a complex differential form, such that on each chart, it

has the form u = f(z)dz = ω +
√
−1∗ω, where ω is a real

harmonic one-form, f(z) is a holomorphic function. All

holomorphic one-forms form a linear space, which is iso-

morphic to the first cohomology group H1(S, R).
A holomorphic one-form induces a special system of

curves on a surface. Horizontal/vertical trajectories are the

curves that are mapped to iso-v/iso-u lines in the param-

eter domain. The trajectories that connect zero points, or

a zero point with the boundary, are called critical trajecto-

ries. The critical horizontal trajectories form a graph, called

the critical graph, which partitions the surface into a set of

non-overlapping patches that jointly cover the surface, and

each patch is either a topological disk or a topological cylin-

der [15]. Each patch Ω ⊂ M can be mapped to the complex

plane by the integration of the holomorphic one-form on it.

The structure of the critical graph and the parameteriza-

tions of the patches are determined by the conformal struc-

ture of the surface. If two surfaces are topologically home-

omorphic to each other and have similar geometrical struc-

tures, they support consistent critical graphs and segmen-

tations (i.e., surface partitions), and their parameterizations

are consistent as well. Therefore, by matching their param-

eter domains, the entire surfaces can be directly matched

in 3D. This generalizes prior work in medical imaging that

has matched surfaces by computing a smooth bijection to a

single canonical surface, such as a sphere or disk.

2.1. Illustration on the Planar Case

Suppose we have an analytic function φ : z → w, z, w ∈
C maps the complex z-plane to the complex w-plane. For

simplicity, we simply choose φ as w = z2; the map is vi-

sualized in Figure 1 (a) and (b). The holomorphic one-form

is the complex differential dw = 2zdz. The red and blue

curves on the z-plane are the horizontal trajectories and ver-

tical trajectories of dw. They are mapped to the red and

blue lines on the w-plane. We examine a horizontal trajec-

tory γ; φ maps γ to a horizontal line, namely, along γ the

imaginary part of the differential form dw is always zero.

Similarly, along a vertical trajectory, the real part of dw is

always zero.

The center of the z-plane is a zero point, which is

mapped to the origin of the w-plane. At the zero point, more

than one horizontal trajectories intersect and more than one

vertical trajectories intersect. The horizontal critical trajec-

tories partition the z-plane into 4 patches. Each patch is

mapped by φ to a half plane in w-plane.

Similarly, Figure 1 (c) shows an analytic map from a 2-

hole annulus, z plane, to the complex plane, w-plane. It is

visualized in the same way, i.e., the horizontal and vertical

trajectories in the z are represented as red and blue curves,

which are mapped to the horizontal and vertical lines in w-



Figure 1. Trajectories on planar surfaces. (a) is the w plane. (b)

illustrates trajectories of dw = 2zdz. (c) shows trajectories on a

genus-0 surface with 3 boundaries, which is topologically equiva-

lent to the ventricular surface after the topology change (Sec. 5.2).

plane. It is still true that the critical graph partitions the

surface into a set of non-overlapping patches, each of which

can be conformally mapped to the complex plane.

3. Algorithm

3.1. Holomorphic One­Forms Computation

Suppose S is an open surface with n + 1 bound-

aries, γ0, · · · , γn. The exact harmonic one-form bases,

{η1, η2, ..., ηn}, can be obtained by ηk = dfk, where fk :
S → R is a harmonic function and computed by solving the

Dirichlet problem on the mesh M :

{

∆fk ≡ 0
fk|γj

= δkj
, where

δkj is the Kronecker function, and ∆ is the discrete Laplace-

Beltrami operator using the co-tangent formula [14].

With the exact harmonic one-forms, we will compute

the closed one-form basis. Fixing a boundary, γ0, com-

pute a path from every other boundary γk to γ0, denote

it by ζk. ζk cuts the mesh open to Mk, while ζk itself

is split into two boundary segments ζ+
k and ζ−k in Mk.

Define a function gk : Mk → R by solving a Dirich-

let problem,







∆gk ≡ 0
gk|ζ+

k
= 1

gk|ζ−

k
= 0.

. Compute the gradient of gk

and let τk = dgk, then map τk back to M , where τk be-

comes a closed one-form. Then we need to find a func-

tion hk : M → R, by solving the following linear system:

∆(τk + dhk) ≡ 0. By updating τk to τk + dhk, we now

have {τ1, τ2, . . . , τn} as a basis set for all the closed but

non-exact harmonic one-forms.

A simple way to compute conjugate one-forms

{∗η1, ...,
∗ηn} is to directly apply the Hodge star [22]. That

is, rotating ηk by 90◦ about the surface normal. How-

ever, because surface normals are usually computed with

numerical errors, this approximation is usually not accurate

enough. From the fact that ηk is harmonic, we can conclude

that its conjugate ∗ηk should also be harmonic. Therefore,
∗ηk can be represented as a linear combination of the base

harmonic one-forms: ∗ηk =
∑n

i=1 aiηi +
∑n

i=1 biτi. Using

the wedge product ∧, we can construct the following linear

system,

∫

M

∗ηk ∧ ηi =

∫

M

η′

k ∧ ηi,

∫

M

∗ηk ∧ τj =

∫

M

η′

k ∧ τj .

We solve this linear system to obtain the coefficients ai

and bi (i = 1, 2, · · · , n) for the conjugate one-form ∗ηk.

Pairing each base exact harmonic one-form in the basis with

its conjugate, we get a basis set for the holomorphic one-

form group on M : {η1 +
√
−1∗η1, · · · , ηn +

√
−1∗ηn}

3.1.1 Canonical Conformal Parameterization

Given a Riemann surface M , there are infinitely many holo-

morphic one-forms, but each of them can be expressed as

a linear combination of the basis elements. We define a

canonical conformal parametrization as a linear combina-

tion of the holomorphic bases ωi = ηi +
√
−1∗ηi, i =

1, ..., n. A canonical conformal holomorphic one-form can

be computed by

ω =

n
∑

i=1

ωi. (1)

The conformal parametrization induced from the canoni-

cal conformal holomorphic one-form is called the canon-

ical conformal parametrization. Compared with the prior

work [22], the current canonical conformal parameteriza-

tion directly works on open boundary surfaces and does not

need to compute surface double covering and homology ba-

sis. So it is more computationally efficient.The obtained

conformal parameterization maximizes the uniformity of

the induced grid over the entire domain and can provides

a consistent mapping across surfaces.

3.2. Two Surface Registration Methods based on
Holomorphic Differentials

We can use the induced conformal parameterization for

further surface analysis. There are numerous nonrigid sur-

face registration algorithms [10] that can be applied to reg-

ister each segmented surface via the parameter domain. In

our work, we applied two surface registration methods: a

constrained harmonic map method and a surface fluid reg-

istration method.

Given two surfaces S1 and S2, whose conformal param-

eterizations are τ1 : S1 → R2 and τ2 : S2 → R2, we

want to compute a map, φ : S1 → S2. Instead of di-

rectly computing φ, we can easily find a harmonic map be-

tween the parameter domains. We look for a harmonic map,

τ : R2 → R2, such that

τ ◦ τ1(S1) = τ2(S2), τ ◦ τ1(∂S1) = τ2(∂S2), ∆τ = 0.

Then the map φ can be obtained by φ = τ1 ◦ τ ◦ τ−1
2 . Since

τ is a harmonic map, and τ1 and τ2 are conformal maps, the



resulting φ is a harmonic map. For landmark curve match-

ing, we guarantee the matching of both ends of the curves.

For the other parts of these curves, we match curves based

on unit speed parameterizations of both curves.

The constrained harmonic map method only considers

an exact boundary mapping while using a smooth mapping

in mathematically enforced regularity on inner parts. To

better match surfaces via their intrinsic geometric features

including conformal factor and mean curvature, we propose

a surface fluid registration method [23] where surface geo-

metric features and mutual information are used to drive a

diffeomorphic fluid flow that is adjusted to find appropriate

surface correspondences in the parameter domain. A diffeo-

morphic surface-to-surface mapping is then recovered that

matches surfaces in 3D. Lastly, we use a spectral method

that ensures that the grids induced on the target surface re-

main conformal, i.e., using the chain rule, we express the

gradient of the mutual information between surfaces in the

conformal basis of the source surface so that the updated

parameterization remains conformal.

4. Multivariate Tensor-based Morphometry

4.1. Derivative Map

Suppose φ : S1 → S2 is a map from the surface S1

to the surface S2. To simplify the formulation, we use the

isothermal coordinates of both surfaces for the arguments.

Let (u1, v1), (u2, v2) be the isothermal coordinates of S1

and S2 respectively. The Riemannian metric of Si is repre-

sented as gi = e2λi(du2
i + dv2

i ), i = 1, 2.
In the local parameters, the map φ can be represented

as φ(u1, v1) = (φ1(u1, v1), φ2(u1, v1)). The derivative

map of φ is the linear map between the tangent spaces,

dφ : TM(p) → TM(φ(p)), induced by the map φ. In the

local parameter domain, the derivative map is the Jacobian

of φ,

dφ =

(

∂φ1

∂u1

∂φ1

∂v1
∂φ2

∂u1

∂φ2

∂v1

)

.

Let the position vector of S1 be r(u1, v1). Denote the

tangent vector fields as ∂
∂u1

= ∂r

∂u1
, ∂

∂v1
= ∂r

∂v1
. Be-

cause (u1, v1) are isothermal coordinates, ∂
∂u1

and ∂
∂v1

only differ by a rotation of π/2. Therefore, we can con-

struct an orthonormal frame on the tangent plane on S1 as

{e−λ1 ∂
∂u1

, e−λ1 ∂
∂v1

}. Similarly, we can construct an or-

thonormal frame on S2 as {e−λ2 ∂
∂u2

, e−λ2 ∂
∂v2

}.

The derivative map under the two orthonormal frames

(for S1 and S2) can be written as

dφ = eλ2−λ1

(

∂φ1

∂u1

∂φ1

∂v1
∂φ2

∂u1

∂φ2

∂v1

)

.

In practice, smooth surfaces are usually approximated by

triangle meshes. The map φ is approximated by a simpli-

cial map, which maps vertices to vertices, edges to edges

and faces to faces. The derivative map dφ is approximated

by the linear map from one face [v1, v2, v3] to another one

[w1, w2, w3]. First, we isometrically embed the triangle

[v1, v2, v3],[w1, w2, w3] onto the plane R2; the planar coor-

dinates of the vertices of vi, wj are denoted using the same

symbols vi, wj . Then we explicitly compute the linear ma-

trix for the derivative map dφ,

dφ = [w3 − w1, w2 − w1][v3 − v1, v2 − v1]
−1. (2)

4.2. Multivariate Tensor­Based Statistics

In our work, we use multivariate statistics on deforma-

tion tensors [12] and adapt the concept to surface tensors.

Let J be the derivative map and define the deformation ten-

sors as S = (JT J)1/2. Instead of analyzing shape change

based on the eigenvalues of the deformation tensor, we con-

sider a new family of metrics, the “Log-Euclidean metrics”

[1]. These metrics make computations on tensors easier to

perform, as they are chosen such that the transformed val-

ues form a vector space, and statistical parameters can then

be computed easily using standard formulae for Euclidean

spaces.

We apply Hotelling’s T 2 test on sets of values in the

log-Euclidean space of the deformation tensors. Given

two groups of n-dimensional vectors Si, i = 1, ..., p, Tj ,

j = 1, ..., q, we use the Mahalanobis distance M to mea-

sure the group mean difference,

M = (logS̄ − logT̄ )Σ−1(logS̄ − logT̄ ) (3)

where S̄ and T̄ are the means of the two groups and Σ is the

combined covariance matrix of the two groups.

5. Experimental Results

We applied the multivariate TBM method to various

anatomical surfaces extracted from 3D MRI scans of the

brain. For registering anatomical surfaces across subjects,

holomorphic one-form based segmentation method works

better for parameterizing long, cylinder-like shapes, such as

hippocampal and lateral ventricular surfaces. In the light

of this observation, we used a holomorphic one-form to

conformally map hippocampal and lateral ventricular sur-

faces to a set of planar rectangles (subsection 5.1 and 5.2).

Through the parameter domain, we can register surfaces by

using a constrained harmonic mapping and a surface fluid

registration method. Figure 2 illustrates the surface con-

formal parameterizations for two different brain anatomical

structures (algorithm details can be found at [22]). In Fig-

ure 2 (a), we compare two conformal parameterization re-

sults on a left hippocampal surface, the left shows results

from the canonical holomorphic one-form and the right



Full Matrix J Determinant of J Largest EV of J Pair of EV of J
Left Hippo Surface 0.0069 0.1495 0.0429 0.0376

Right Hippo Surface 0.0303 0.0873 0.1164 0.0715

Left Vent Surface 0.0028 0.0330 0.0098 0.0084

Right Vent Surface 0.0066 0.0448 0.0120 0.0226
Table 1. Permutation-based overall significance p value for two experiments (J is the Jacobian matrix and EV stands for Eigenvalue. To

detect group differences, it was advantageous to use the full tensor, or its two eigenvalues together; with simpler local measures based on

surface area, group differences were missed. ).

shows from spherical conformal mapping [9]. Both pa-

rameterizations are visualized by the texture mapping of

the checker board. The holomorphic one-form parameter-

ization result is more uniform than the spherical one. It

helps generate more accurate surface mapping results. Fig-

ure 2 (b) illustrates how we use the canonical holomorphic

one-form to register a left lateral ventricular surface. (c) il-

lustrates a comparison of the surface segmentation results

on a pair of lateral ventricular surfaces from two different

groups, an HIV/AIDS individual (up) and a matched control

subject (bottom). In the figure, each segment is labeled by

a unique color and surfaces are registered by matching each

component segment. The ventricular surfaces are dilated

due to the disease. Since their overall surface structures are

still similar, our holomorphic differential based algorithm

successfully registered them consistently.

In this paper, the segmentations are regarded as given,

and results are from automated and manual segmentations

detailed in other prior works [18, 17].

5.1. Multivariate Tensor­Based Morphometry
on Hippocampal Surfaces: Application to
Alzheimer’s Disease

The hippocampal surface is a structure in the medial tem-

poral lobe of the brain. Parametric shape models of the

hippocampus are commonly developed for tracking shape

differences or longitudinal atrophy in disease. Many prior

studies, e.g., [18, 13], have shown that there is atrophy as

the disease progresses. In our method, we leave two holes

on the front and back of the hippocampal surface, repre-

senting its anterior junction with the amygdala, and its pos-

terior limit as it turns into the white matter of the fornix.

It can then be logically represented as an open boundary

genus-one surface, i.e., a cylinder. Its canonical holomor-

phic one-form can be easily computed. By integrating this

holomorphic one-form, it can be conformally mapped to a

rectangle. By considering intrinsic geometric feature align-

ment, a surface fluid registration method [23] achieved bet-

ter registration results than our prior work [20].

Figure 3 illustrates our experimental results on a group of

hippocampal surface models extracted from 3D brain MRI

scans of 12 AD individuals and 14 control subjects [18].

After surface registration, we ran a permutation test with

Figure 2. The first row illustrates how a holomorphic 1-form con-

formally maps a left hippocampal surface to a rectangle. The sec-

ond row illustrates how a holomorphic 1-form conformally splits a

left lateral ventricular surface to three component parts, and maps

each of them conformally to a rectangle. The third row illustrates

the computed exact harmonic 1-form (a), conjugate harmonic 1-

form (b) and holomorphic 1-form that conformally maps a cortical

surface to a slit map.

5, 000 random assignments of subjects to groups to esti-

mate the statistical significance of the areas with group dif-

ferences in surface morphometry. We also used a statisti-

cal threshold of p = 0.05 at each surface point to compute

the supra-threshold surface area, and we estimate the over-

all significance of the experimental results by using a non-

parametric permutation test to establish an empirical null

distribution for this surface area [19]. Although the sam-

ples sizes are small, we still detected relatively large statis-

tically significant areas, consistent with prior findings [18].

The overall statistical significance p-values, based on per-

mutation testing (and therefore corrected for multiple com-

parisons), were 0.0069 for the left hippocampal surface and

0.0303 for the right hippocampal surface (Figure 3 (a)).

5.2. Multivariate Tensor­Based Morphometry of
the Ventricular Surface in HIV/AIDS

The lateral ventricles are often enlarged in disease and

can provide sensitive measures of disease progression [17,



Figure 3. Comparison of various tensor-based morphometry re-

sults on a group of hippocampal surfaces from 12 AD patients and

14 matched control subjects. Each panel is associated with a dif-

ferent TBM metric. Each row is the same surface viewed from

the bottom and the top, respectively. In all cases, multivariate

statistics on the full metric tensor detected anatomical differences

more powerfully than simple univariate surface measures. Overall

statistical significance values (corrected for multiple comparisons)

are listed in Table 1.

3]. Ventricular changes reflect atrophy in surrounding struc-

tures, so ventricular measures and surface-based maps pro-

vide sensitive assessments of tissue reduction that correlate

with cognitive deterioration in illnesses. However, the con-

cave shape, complex branching topology and extreme nar-

rowness of the inferior and posterior horns have made it

difficult for surface parametrization approaches to impose

a grid on the entire structure without introducing signifi-

cant area distortion. To model the lateral ventricular sur-

face, we automatically locate and introduce three cuts on

each ventricle. The cuts are motivated by examining the

topology of the lateral ventricles, in which several horns are

joined together at the ventricular “atrium” or “trigone”. We

call this topological modeling step, interpreting the ventri-

cles as a set of connected, simpler surfaces, a topology op-

timization operation. The topological optimization helps

to enable a uniform parametrization in some areas that oth-

erwise are very difficult to capture with usual parametriza-

tion methods. After the topology is modeled in this way, a

lateral ventricular surface, in each hemisphere, becomes an

open boundary surface with 3 boundaries. We computed the

canonical holomorphic one-form (Eqn. 1). With holomor-

phic flow segmentation [22], each lateral ventricular sur-

face can be divided into 3 pieces. Although surface geom-

etry is widely variable across subjects, the zero point loca-

tions are intrinsically determined by the surface conformal

structures, and the partitioning of the surface into compo-

nent meshes is highly consistent across subjects. After the

surface segmentation, each lateral ventricular surface is di-

vided to three surfaces, each topologically equivalent to a

cylinder. For each piece, we again applied the holomorphic

flow algorithm to it and conformally mapped it to a rectan-

gle and register them with a constrained harmonic map.

In our experiments, we compared ventricular sur-

face models extracted from 3D brain MRI scans of 11

HIV/AIDS individuals and 8 control subjects [17]. After

surface registration, we computed the surface Jacobian ma-

trix and applied multivariate tensor-based statistics to study

differences in ventricular surface morphometry. We ran a

permutation test with 5, 000 random assignments of sub-

jects to groups to estimate the statistical significance of the

areas with group differences in surface morphometry. We

also used a statistical threshold of p = 0.05 at each surface

point to estimate the overall significance of the experimental

results by non-parametric permutation test [19]. The exper-

imental results are shown in Figure 4(a). Although sample

sizes are small, we still detected large statistically signifi-

cant areas, consistent with prior findings [17]. The overall

statistical significance p-values, based on permutation test-

ing, were 0.0022 for the left lateral ventricle and 0.008 for

the right lateral ventricle [20].

5.3. Biomarker Detection for HIV/AIDS Ventricu­
lar Surface Morphometry

Biomarkers are a set of biology features that can help

screening and early diagnosis of diseases. Ferrarini et al. [8]

studied biomarkers for lateral ventricular surface for AD.

Based on our multivariate TBM results, we picked up a set

of vertex that are statistically significant in the obtained p-

map. We used this set of vertex as biomarkers to classify a

new surface based on its multivariate TBM statistics. In our

experiments, first, we sorted all vertex according their p val-

ues from low to high. We select a certain number of vertices

(e.g. 1% of overall vertices) with the smallest p values as the

biomarkers. With a distance calculated by Equation 3, we

ran leave-on-out tests with the Nearest Neighbor classifier

on left and right ventricular surfaces. For 1% of the whole

vertex set, about 271 vertices as biomarkers, we success-

fully classified all 11 HIV patient surfaces on both sides.

Overall, we achieved a 100% sensitivity on both right and

left lateral ventricular surfaces; and 100% and 87.5% speci-

ficity on right and left, respectively.

5.4. Comparison with Other TBM methods

To explore whether our multivariate statistics provided

extra power when running TBM on the surface data, in each

experiment, we also conducted three additional statistical

tests based on different tensor-based statistics derived from

the Jacobian matrix. The other statistics we studied were:

(1) the determinant of Jacobian matrix; (2) the largest eigen-

value of Jacobian matrix; and (3) the pair of eigenvalues of

the Jacobian matrix, treated as a 2-component vector. For

statistics (1) and (2), we applied a Students t test to compute

the group mean difference at each surface point. In case

(3), we used Hotelling’s T 2 statistics to compute the group

mean difference. For the three new statistics, their calcu-

lated statistical maps are shown in Figure 3, 4, respectively.

For each statistic, we also computed the overall p-values



(see Table 1). In each experiment, the overall localization

and spatial pattern of surface abnormalities detected by dif-

ferent tensor-based surface statistics were highly consistent.

Figure 4. Comparison of various tensor-based morphometry re-

sults on a group of lateral ventricular surfaces from 11 HIV/AIDS

patients and 8 matched control subjects. Multivariate statistics on

the full metric tensor detected anatomical differences more power-

fully than standard scalar statistics. Overall statistical significance

values (corrected for multiple comparisons) are listed in Table 1.

We also conducted biomarker experiments based on the

p-map results from three tensor-based statistical tests. Each

time, we selected the same number of vertex that are most

statistically significant different between two groups as the

biomarkers. We calculated L2 norm as the distance met-

ric and did a leave-one-out test with the Nearest Neighbor

classifier on each lateral ventricular surface. Figure 5 il-

lustrates various sensitivity rates, i.e., the rate that a surface

from HIV/AIDS group was successfully classified, with dif-

ferent number of biomarkers for four statistics. The results

show that the full tensor metric based biomarkers achieved a

100% sensitivity and outperformed results of all three statis-

tics. The results on the specificity are similar and ignored

here due to the space limitation.

In summary, both experiments strongly suggested that

the newly proposed multivariate TBM method has more

detection power in terms of effect size (and the area

with suprathreshold statistics), probably because it captures

more directional and rotational information when measur-

ing geometric differences.

6. Conclusion and Future Work

In this paper, we presented a multivariate tensor-based

morphometry framework for analyzing parametric surfaces.

Holomorphic differentials there were computed with bet-

ter numerical accuracy were used to register anatomical

structures. We applied this framework to detect surface

regions with abnormal brain structure in groups of AD

and HIV/AIDS individuals versus matched healthy con-

trols. The empirical results suggest that our method may

outperform TBM methods based on simpler univariate sur-

face measures. In future, we will apply this multivariate

TBM framework to additional 3D MRI datasets to study

brain surface morphometry and general shape analysis.
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