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ABSTRACT

Important anatomical features on the cortical surface are usually rep-
resented by landmark curves, called sulcal/gyral curves. Manual la-
beling of these landmark curves is time-consuming, especially when
a large dataset is analyzed. In this paper, we propose a method
to trace the landmark curves on the cortical surfaces automatically
based on the principal directions of the local Weingarten matrix.
Based on a global conformal parametrization of the cortical surface,
our method adjusts the landmark curves iteratively on the spheri-
cal or rectangular parameter domain of the cortical surface along
the principal direction field, using umbilic points of the surface as
anchors. The landmark curves can then be mapped back onto the
cortical surface. To speed up the iterative scheme, we obtain a good
initialization by extracting the high curvature regions on the cortex
using the Chan-Vese segmentation method, which solves a PDE on
the manifold using our global conformal parametrization technique.
Experimental results show that the landmark curves detected by our
algorithm closely resemble the same curves labeled manually. We
applied these automatically labeled landmark curves to build aver-
age cortical surfaces with an optimized brain conformal mapping
method. Experimental results show that our method can help in au-
tomatically matching cortical surfaces of the brain across subjects.

1. INTRODUCTION
Finding important feature points or curves on anatomical surfaces,
such as the sulcal/gyral curves of the cortex, is an important prob-
lem in medical imaging. It is extremely time-consuming to label
these landmark curves manually, especially when data large dataset
must be analyzed. An automatic or semi-automatic way to detect
these feature curves would be invaluable . In this paper, we pro-
pose a method to trace the landmark curves on the cortical surfaces
automatically. Given a global conformal parametrization of the cor-
tical surface, we fix two endpoints, called the anchor points, based
on umbilic points of the curvature field. We then trace the landmark
curve by iteratively adjusting its path in the spherical or rectangu-
lar parameter domain of the cortex, along one of the two principal
direction fields. Using the parameterization, the landmark curves
can be mapped back onto the cortical surface in 3D. To speed up
the iterative scheme, we propose a method to obtain a good initial-
ization by extracting high curvature regions on the cortical surface
using the Chan-Vese segmentation method[1]. This involves solv-
ing a PDE (Euler-Lagrange equation) on the cortical manifold us-
ing the global conformal parametrization. Finally, we used these
automatic labelled landmark curves to created an optimized brain
conformal mapping, which can match important anatomical features
across subjects. This is based on the minimization of a combined
energy functional Enew = Eharmonic + λElandmark.

2. PREVIOUS WORK
Automatic detection of sulcal landmarks on the cortical surface has
been intensively studied by several research groups. Prince et al. [2]
proposed a method to automatically segment major cortical sulci on
the outer brain boundary. This is based on a statistical shape model,
which includes a network of deformable curves on the unit sphere,
and seeks geometric features such as high curvature regions. It then
labels these features via a deformation process that is constrained
within a spherical map of the outer brain boundary. Lohmann et.
al. [3] proposed an algorithm that automatically detects and at-
tributes neuroanatomical names to the major cortical folds by ap-
plying image analysis methods to human brain MRI data. Sulcal
basins are segmented using a region growing approach. Zeng et al.
[4] proposed a method to automatic intrasulcal ribbon finding, by
segmenting the cortex using coupled surfaces in a level set formu-
lation, treating the outer cortical surface as the zero level set of a
higher-dimensional distance function. By using the distance func-
tion, they formulated the sulcal ribbon finding problem in terms of
level set-based surface deformations. Khaneja et al. [5] used dy-
namic programming to generate length-minimizing geodesics and
curves of extremal curvature on the neocortex of the Macaque and
the Visible Human. Subsol [6] used the principal curvatures and
”crest lines” to characterize sulcal/gyral shape and location, follow-
ing the valleys and crests of the cortical surfaces. Rettman et al. [7]
used watersheds on the cortical surface to automatically segment sul-
cal regions, followed by an atlas-based method assigned labels to the
main sulci. Riviere et al. [8] and Mangin et al. [9] use a Markov
Random Field model, called an attributed relational graph, to assign
labels to a graph-based model of connected sulcal surfaces in 3D.

Optimization of surface diffeomorphisms by landmark match-
ing has been studied intensively. Gu et al. [10] proposed to opti-
mize the conformal parametrization of a surface by applying an op-
timal Möbius transformation to minimize a landmark mismatch en-
ergy. The resulting parameterization remains conformal. Glaunes et
al. [11] generated large deformation diffeomorphisms of the sphere
onto itself, given the displacements of a finite set of template land-
marks. The diffeomorphism obtained can match the geometric fea-
tures very well, although the resulting mapping is not generally con-
formal. Tosun et al. [12] proposed a more automated mapping tech-
nique that results in good sulcal alignment across subjects, by com-
bining watershed segmentation, iterated closest point registration,
optical flow to match scalar fields in the cortical parameter space,
and inverse stereographic projection.

3. BASIC MATHEMATICAL THEORY
In this section, we will briefly review some basic mathematical defi-
nitions.



Fig. 1. Conformal parametrization of the cortical surface via a mapping onto a 2D
rectangle.

Firstly, a diffeomorphism f : M → N is a conformal map-
ping if it preserves the first fundamental form up to a scaling fac-
tor (the conformal factor). Mathematically, this means that ds2

M =
λf∗(ds2

N ), where ds2
M and ds2

N are the first fundamental form on
surfaces M and N , respectively and λ is the conformal factor [13].

Next, we give a brief overview of curvatures on a Riemann sur-
face. The normal curvature κn of a Riemann surface in a given di-
rection is the reciprocal of the radius of the circle that best approxi-
mates a normal slice of the surface in that direction, which varies in
different directions. It follows that:

κn = v
T IIv = v

T

„
e f
f g

«
v

for any tangent vector v. II is called the Weingarten matrix and is
symmetric. Its eigenvalues and eigenvectors are called principal cur-
vatures and principal directions respectively. The sum of the eigen-
values is the mean curvature. A point on the Riemann surface at
which the Weingarten matrix has the same eigenvalues is called an
umbilic point [14].

4. ALGORITHM
In this section, we discuss our algorithm for automatic landmark
tracking and how it is applied.
4.1. Computation of conformal parameterization
For a diffeomorphism between two genus zero (closed) surfaces, a
map is conformal if and only if it minimizes the harmonic energy,Eharmonic

[10]. A conformal map can thus be obtained by minimizing the har-
monic energy. However, this is not true for surfaces of genus one or
higher.

For high genus surfaces, Gu et. al [15] proposed an efficient
approach to parameterize surfaces conformally using a set of con-
nected 2D rectangles. They compute a holomorphic 1-form on the
Riemann surface, using concepts from homology and cohomology
group theory, and Hodge theory.

With this method, we can compute a conformal parametrization
from any given surface onto a 2D domain. (See Figure 1) [16]

4.2. Computation of principal direction fields from the global
conformal parametrization
Denote the cortical surface by C. Let φ : D → C be the global con-
formal parametrization of C where D is a rectangular parameter do-
main. Let λ be the conformal factor of φ. Following Rusinkiewicz’s
work [17], we can compute the principal directions, and represent
them on the parameter domain D. This is based on the following
three steps:
Step 1: Per-Face Curvature Computation

The Weingarten matrix is defined in terms of the directional
derivatives of the normal vector n:

II = (Dun, Dvn) =

„ ∂n
∂u

· u ∂n
∂v
· u

∂n
∂u

· v ∂n
∂v
· v

«

where u =

„ 1√
λ

0

«
and v =

„
0
1√
λ

«
are the directions of an

orthonormal coordinate system for the tangent plane (represented in
the parameter domain D).

Fig. 2. A single face (triangle) of the triangulated mesh.

Simple checking gives: IIs = Dsn , which is the derivative of
the normal in the direction s - this is also a vector in the tangent
plane. Given a triangulation of the Riemann surface, we can approx-
imate the Weingarten matrix II for each face (triangle).

For a triangle with three well-defined directions (edges) together
with the differences in normals in those directions (Refer to Figure
2). We have:

II
„

e0 · u
e0 · v

«
=
„
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(n2 − n1) · v

«
; II
„
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;
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This gives a set of linear constraints on the elements of the Wein-
garten matrix, which can be determined using the least square method.
Step 2: Coordinate system Transformation

After we compute the Weingarten matrix on each face in the
(uf , vf ) coordinate system, we can average it with contributions
from adjacent triangles. Suppose that each vertex p has its own or-
thonormal coordinate system (up, vp). We have to transform the
Weingarten matrix tensor into the vertex coordinate frame. The first
component of II, expressed in the (up, vp) coordinate system, can
be found as:

ep = uT
p IIup = (1, 0)

„
ep fp

fp gp

«
(1, 0)T

Thus, ep = (up · uf , up · vf )II(up · uf , up · vf )T

We can find fp and gp similarly.
Step 3: Weighting

Another question is: how much of the face curvature should be
accumulated at each vertex? For each face f which is adjacent to the
vertex p, we take the weighting wf,p to be the area of f divided by
the squares of the lengths of the two edges that touch the vertex p.

4.3. Variational method for landmark tracking
Given the principal direction field

−→
V (t) with smaller eigenvalues

on the cortical surface C, we propose a variational method to trace
the sulcal landmark curve iteratively, after fixing two anchor points
(a & b) on the sulci. Let φ : D → C be the conformal parametriza-
tion of C, < ·, · > to be its Riemannian metric and λ to be its con-
formal factor. We propose to locate a curve −→c : [0, 1] → C with
endpoints a and b, that minimizes the following energy functional:

Eprincipal(
−→c )

=
Z 1

0
|
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q
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where −→γ = −→c ◦ φ−1 : [0, 1] → D is the corresponding iteratively
defined curve on the parameter domain;

−→
G(−→γ ) =

p
λ(−→γ )

−→
V (−→γ );

| · |2M =< ·, · >M and | · | is the (usual) length defined on D. By
minimizing the energy E, we minimize the difference between the
tangent vector field along the curve and the principal direction field



−→
V . The resulting minimizing curve is the curve that is closest to the
curve traced along the principal direction.

Let: −→G = (G1, G2, G3);
−→
K = (K1, K2, K3) =
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|−→γ ′| −

−→
G(−→γ )
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We can locate the landmark curves iteratively using the steepest

descent algorithm: d−→γ
dt

= Σ3
i=1[Ki

−→
L i]

′ + Ki∇Gi

4.4. Landmark hypothesis by Chan-Vese Segmentation
In order to speed up the iterative scheme, we decided to obtain a
good initialization by extracting the high curvature regions on the
cortical surface using the Chan-Vese (CV) segmentation method [1].
We can extend the CV segmentation on R2 to any arbitrary Riemann
surface M such as the cortical surface.

Let φ : R2 → M be the conformal parametrization of the sur-
face M .

We propose to minimize the following energy functional:

F (c1, c2, ψ) =

Z

M
(u0 − c1)2H(ψ)dS +

Z

M
(u0 − c2)2(1−H(ψ))dS

+ ν

Z

M
|∇MH(ψ)|MdS,

where ψ : M → R is the level set function and | · |M =
√

< ·, · >.
With the conformal parametrization, we have:

F (c1, c2, ψ) =

Z

R2
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Z

R2
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Z
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√
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For simplicity, we let ζ = ψ ◦ φ and w0 = u0 ◦ φ. Fixing ζ, we
must have:

c1(t) =

R
Ω w0H(ζ(t, x, y))λdxdy
R
Ω H(ζ(t, x, y))λdxdy

; c2(t) =

R
Ω w0(1 −H(ζ(t, x, y))λdxdy
R
Ω(1 −H(ζ(t, x, y)))λdxdy

Fixing c1, c2, the Euler-Lagrange equation becomes:

∂ζ

∂t
= λδ(ζ)[ ν

1

λ
5 ·(

√
λ
∇ζ

||∇ζ|| )− (w0 − c1)
2

+ (w0 − c2)
2
]

Now, the sulcal landmarks on the cortical surface lie at locations
with relatively high curvature. To formulate the CV segmentation,
we can consider the intensity term as being defined by the mean cur-
vature. Sulcal locations can then be circumscribed by first extracting
out the high curvature regions. Fixing two anchor points inside the
extracted region, we can get a good initialization of the landmark
curve by looking for a shortest path inside the region that joins the
two points. Also, we can consider the umbilic points inside the re-
gion as anchor points. By definition, an umbilic point on a manifold
is a location where the two principal curvatures are the same. There-
fore, we can fix the anchor points inside the region by extracting
regions with a small difference in principal curvatures.

5. OPTIMIZATION OF BRAIN CONFORMAL
PARAMETRIZATION

In brain mapping research, cortical surface data are often mapped
to a parameter domain such as a sphere, providing a common co-
ordinate system for data integration [18, 19]. Conformal mapping
offers a convenient way to parameterize the genus zero cortical sur-
faces of the brain onto the sphere [10]. To compare cortical surfaces

Fig. 3. Sulcal curve extraction on the cortical surface by Chan-Vese segmentation. As
iterations proceed, the contour is evolved to the deep sulcal region.

Fig. 4. Automatic landmark tracking using a variational approach. In (a), we trace the
landmark curves in the parameter domain along the edges whose directions are closest to
the principal direction field. The corresponding landmark curves on the cortical surface
is shown in (b). This gives a good initialization for our variational method to locate
landmarks. (c) & (d) show the landmark curves after different numbers of iterations.

more effectively, it is desirable to adjust the conformal parameteriza-
tions to match specific anatomical features on the cortical surfaces as
far as possible. As an application of our automatic landmark track-
ing algorithm, we use the automatically labelled landmark curves
to generate an optimized conformal mapping on the surface, in the
sense that homologous features across subjects are caused to lie at
the same parameter locations in a conformal grid. This matching
of cortical patterns improves the alignment of data across subjects,
e.g., when integrating functional imaging data across subjects, mea-
suring brain changes, or making statistical comparisons in cortical
anatomy. This is done by minimizing the compound energy func-
tional Enew = Eharmonic + λElandmark, where Eharmonic is the
harmonic energy of the parameterization and Elandmark is the land-
mark mismatch energy.

Suppose C1 and C2 are two cortical surfaces we want to com-
pare. We let f1 : C1 → S2 be the conformal parameterization of C1

mapping it onto S2. Let {pi : [0, 1] → S2} and {qi : [0, 1] → S2}
be the automatic labelled landmark curves, represented on the pa-
rameter domain S2 with unit speed parametrization, for C1 and C2

respectively. Let h : C2 → S2 be any homeomorphism from
C2 onto S2. We define the landmark mismatch energy of h as:
Elandmark(h) = 1/2

Pn
i=1

R 1

0
||h(qi(t)) − f1(pi(t))||2dt, where

the norm represents distance on the sphere. By minimizing this en-
ergy functional, the Euclidean distance between the corresponding
landmarks on the sphere is minimized [20].



6. EXPERIMENTAL RESULTS
In one experiment, we tested our automatic landmark tracking al-
gorithm on a set of left hemisphere cortical surfaces extracted from
brain MRI scans, acquired from normal subjects at 1.5 T (on a GE
Signa scanner). In our experiments, 6 landmarks were automatically
located on cortical surfaces.

Figure 3, shows how we can effectively locate the initial land-
mark guess areas on the cortical surface using the Chan-Vese seg-
mentation. Notice that the contour evolved to the deep sulcal region.

Our variational method to locate landmark curves is illustrated
in Figure 4. With the initial guess given by the Chan-Vese model
(we choose the two extreme points in the located area as the anchor
points), we trace the landmark curves iteratively based on the princi-
pal direction field. In Figure 4 (a), we trace the landmark curves on
the parameter domain along the edges whose directions are closest
to the principal direction field. The corresponding landmark curves
on the cortical surface are shown in Figure 4 (b). Figure 4 c & d
show the landmark curves after different numbers of iterations. The
curve evolves to a deeper sulcal region with each iteration.

To compare our automatic landmark tracing results with the man-
ually labeled landmarks, we measured the Euclidean distance Edifference

(on the parameter domain) between the automatically and manually
labelled landmark curves. Figure 5 shows the value of Edifference

at different iterations for different landmark curves. Note that the
value becomes smaller as the iterations proceed. This means that the
automatically labeled landmark curves more closely resemble those
defined manually as the iterations continue.

Figure 6 illustrates an application of our automatic landmark
tracking algorithm. We illustrate our idea of optimizing conformal
mappings using the automatically traced landmark curves. Figure
6 (A) and (B) show two different cortical surfaces being mapped
conformally to the sphere. Notice that the alignment of the sulcal
landmark curves are not consistent across subjects. In Figure 6 (C),
the same cortical surface in (B) is mapped to the sphere using our
method. The landmark curves closely resemble those in (A), mean-
ing that the landmark curves are more consistently aligned with our
algorithm.

To visualize how well our algorithm can improve the alignment
of key sulcal landmarks, we took the 3D vector average of the 15 sur-
faces re-parameterized using optimized conformal maps [20]. Fig-
ure 6 shows average surface maps from multiple subjects from dif-
ferent viewpoints. In (D) and (E), sulcal landmarks are clearly pre-
served inside the green circle where landmarks are automatically la-
beled. In (F), the sulcal landmarks are averaged out inside the green
circle where no landmarks were automatically detected. This implies
that our algorithm can help improve the alignment of the important
anatomical features, which should greatly assist in multi-subject av-
eraging and statistical analysis of cortical data.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a variational method to automatically
trace landmark curves on cortical surfaces, based on the principal di-
rections. To accelerate the iterative scheme, we initialized the curves
by extracting high curvature regions using Chan-Vese segmentation.
This involves solving a PDE on the cortical manifold. The land-
mark curves detected by our algorithm closely resembled those la-
beled manually. Finally, we used the automatically labeled land-
mark curves to create an optimized brain conformal mapping, which
matches important anatomical features across subjects. Surface av-
erages from multiple subjects showed that our computed maps can
consistently align key anatomic landmarks. In future, we will per-
form a more exhaustive quantitative analysis of our algorithm’s per-

Fig. 5. Numerical comparison between automatically labeled landmarks and man-
ually labeled landmarks by computing the Euclidean distance Edifference (in the
parameter domain) between the automatically and manually labeled landmark curves.

Fig. 6. Optimization of brain conformal mapping using automatic landmark tracking.
In (A) and (B), two different cortical surfaces are mapped conformally to the sphere.
In (C), we map one of the cortical surfaces to the sphere using our algorithm. (D), (E),
(F) shows the average surface (for N=15 subjects) based on the optimized conformal re-
parametrization using the variational approach. Except in (F), where no landmarks were
defined automatically, the major sulcal landmarks are remarkably well defined, even in
this multi-subject average.

formance, mapping errors and quantifying improved registration,
across multiple subjects, on a regional basis.
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