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Abstract. It is well known that any genus zero surface can be mapped
conformally onto the sphere and any local portion thereof onto a disk.
However, it is not trivial to find a general method which finds a conformal
mapping between two general genus zero surfaces. We propose a new
variational method which can find a unique mapping between any two
genus zero manifolds by minimizing the harmonic energy of the map. We
demonstrate the feasibility of our algorithm by applying it to the cortical
surface matching problem. We use a mesh structure to represent the brain
surface. Further constraints are added to ensure that the conformal map
is unique. Empirical tests on MRI data show that the mappings preserve
angular relationships, are stable in MRIs acquired at different times, and
are robust to differences in data triangulation, and resolution. Compared
with other brain surface conformal mapping algorithms, our algorithm
is more stable and has good extensibility.

1 Introduction

Recent developments in brain imaging have accelerated the collection and
databasing of brain maps. Nonetheless, computational problems arise when inte-
grating and comparing brain data. One way to analyze and compare brain data
is to map them into a canonical space while retaining geometric information on
the original structures as far as possible [1,2,3,4,5]. Fischl et al. [1] demonstrate
that surface based brain mapping can offer advantages over volume based brain
mapping, especially when localizing cortical deficits and functional activations.
Thompson et al. [4,5] introduce a mathematical framework based on covariant
partial differential equations, and pull-backs of mappings under harmonic flows,
to help analyze signals localized on brain surfaces.
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1.1 Previous Work

Conformal surface parameterizations have been studied intensively. Most works
in conformal parameterizations deal with surface patches homeomorphic to topo-
logical disks. For surfaces with arbitrary topologies, Gu and Yau [6] introduce
a general method for global conformal parameterizations based on the structure
of the cohomology group of holomorphic one-forms. They generalize the method
for surfaces with boundaries in [7].

For genus zero surfaces, there are five basic approaches to achieve conformal
parameterizations.

1. Harmonic energy minimization. Eck et al. [8] introduce the discrete harmonic
map, which approximates the continuous harmonic map [9] by minimizing
a metric dispersion criterion. Desbrun et al. [10,11] compute the discrete
Dirichlet energy and apply conformal parameterization to interactive geom-
etry remeshing. Pinkall and Polthier compute the discrete harmonic map and
Hodge star operator for the purpose of creating a minimal surface [12]. Kanai
et al. use a harmonic map for geometric metamorphosis in [13]. Gu and Yau
in [6] introduce a non-linear optimization method to compute global confor-
mal parameterizations for genus zero surfaces. The optimization is carried
out in the tangent spaces of the sphere.

2. Cauchy-Riemann equation approximation. Levy et al. [14] compute a quasi-
conformal parameterization of topological disks by approximating the
Cauchy-Riemann equation using the least squares method. They show rig-
orously that the quasi-conformal parameterization exists uniquely, and is
invariant to similarity transformations, independent of resolution, and ori-
entation preserving.

3. Laplacian operator linearization. Haker et al. [3] use a method to compute
a global conformal mapping from a genus zero surface to a sphere by repre-
senting the Laplace-Beltrami operator as a linear system.

4. Circle packing. Circle packing is introduced in [2]. Classical analytic functions
can be approximated using circle packing. But for general surfaces in R

3, the
circle packing method considers only the connectivity but not the geometry,
so it is not suitable for our parameterization purpose.

Bakircioglu et al. use spherical harmonics to compute a flow on the sphere
in [15] in order to match curves on the brain. Thompson and Toga use a similar
approach in [16]. This flow field can be thought of as the variational minimizer
of the integral over the sphere of Lu, with L some power of the Laplacian, and
u the deformation. This is very similar to the spherical harmonic map used in
this paper.

1.2 Basic Idea

It is well known that any genus zero surface can be mapped conformally onto
the sphere and any local portion thereof onto a disk. This mapping, a conformal
equivalence, is one-to-one, onto, and angle-preserving. Moreover, the elements
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of the first fundamental form remain unchanged, except for a scaling factor
(the so-called Conformal Factor). For this reason, conformal mappings are often
described as being similarities in the small. Since the cortical surface of the
brain is a genus zero surface, conformal mapping offers a convenient method
to retain local geometric information, when mapping data between surfaces.
Indeed, several groups have created flattened representations or visualizations
of the cerebral cortex or cerebellum [2,3] using conformal mapping techniques.
However, these approaches are either not strictly angle preserving [2], or there
may be areas with large geometric distortions [3]. In this paper, we propose a new
genus zero surface conformal mapping algorithm [6] and demonstrate its use in
computing conformal mappings between brain surfaces. Our algorithm depends
only on the surface geometry and is invariant to changes in image resolution
and the specifics of data triangulation. Our experimental results show that our
algorithm has advantageous properties for cortical surface matching.

Suppose K is a simplicial complex, and f : |K| → R3, which embeds |K| in
R3; then (K, f) is called a mesh. Given two genus zero meshes M1, M2, there are
many conformal mappings between them. Our algorithm for computing confor-
mal mappings is based on the fact that for genus zero surfaces S1, S2, f : S1 → S2
is conformal if and only if f is harmonic. All conformal mappings between S1, S2
form a group, the so-called Möbius group. Our method is as follows: we first find
a homeomorphism h between M1 and M2, then deform h such that h minimizes
the harmonic energy. To ensure the convergence of the algorithm, constraints
are added; this also ensures that there is a unique conformal map.

This paper is organized as follows. In Section 2, we give the definitions of
a piecewise linear function space, inner product and piecewise Laplacian. In
Section 3, we describe the steepest descent algorithm which is used to mini-
mize the string energy. In Section 4, we detail our conformal spherical mapping
algorithms. Experimental results on conformal mapping for brain surfaces are
reported in Section 6. In Section 7, we compare our algorithm with other con-
formal mapping approaches used in neuroimaging. We conclude the paper in
Section 8.

2 Piecewise Linear Function Space, Inner Product, and
Laplacian

For the diffeomorphisms between genus zero surfaces, if the map minimizes the
harmonic energy, then it is conformal. Based on this fact, the algorithm is de-
signed as a steepest descendent method.

Definition 1. All piecewise linear functions defined on K form a linear space,
denoted by CPL(K).

Definition 2. Suppose a set of string constants ku,v are assigned for each edge
{u, v}, the inner product on CPL is defined as the quadratic form

< f, g >=
1
2

∑

{u,v}∈K

ku,v(f(u) − f(v))(g(u) − g(v)) (1)
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The energy is defined as the norm on CPL.

Definition 3. Suppose f ∈ CPL, the string energy is defined as:

E(f) =< f, f >=
∑

{u,v}∈K

ku,v||f(u) − f(v)||2 (2)

By changing the string constants ku,v in the energy formula, we can define dif-
ferent string energies.

Definition 4. If string constants ku,v ≡ 1, the string energy is known as the
Tuette energy.

Definition 5. Suppose edge {u, v} has two adjacent faces Tα, Tβ, Tα =
{v0, v1, v2}, define the parameters

aα
v1,v2

=
1
2

(v1 − v3) · (v2 − v3)
|(v1 − v3) × (v2 − v3)| (3)

aα
v2,v3

=
1
2

(v2 − v1) · (v3 − v1)
|(v2 − v1) × (v3 − v1)| (4)

aα
v3,v1

=
1
2

(v3 − v2) · (v1 − v2)
|(v3 − v2) × (v1 − v2)| (5)

(6)

Tβ is defined similarly. If ku,v = aα
u,v + aβ

u,v, the string energy obtained is called
the harmonic energy.

The string energy is always a quadratic form. By carefully choosing the string
coefficients, we make sure the quadratic form is positive definite. This will guar-
antee the convergence of the steepest descent method.

Definition 6. The piecewise Laplacian is the linear operator ∆PL : CPL →
CPL on the space of piecewise linear functions on K, defined by the formula

∆PL(f) =
∑

{u,v}∈K

ku,v(f(v) − f(u)) (7)

If f minimizes the string energy, then f satisfies the condition ∆PL(f) = 0.
Suppose M1, M2 are two meshes and the map f : M1 → M2 is a map between
them, f can be treated as a map from M1 to R3 also.

Definition 7. For a map f : M1 → R3, f = (f0, f1, f2), fi ∈ CPL, i = 0, 1, 2,
we define the energy as the norm of f :

E(f) =
2∑

i=0

E(fi) (8)

The Laplacian is defined in a similar way,
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Definition 8. For a map f : M1 → R3 , the piecewise Laplacian of f is

∆PLf = (∆PLf0, ∆PLf1, ∆PLf2) (9)

A map f : M1 → M2 is harmonic, if and only if ∆PLf only has a normal
component, and its tangential component is zero.

∆PL(f) = (∆PLf)⊥ (10)

3 Steepest Descent Algorithm

Suppose we would like to compute a mapping f : M1 → M2 such that f min-
imizes a string energy E(f). This can be solved easily by the steepest descent
algorithm:

df(t)
dt

= −∆f(t) (11)

f(M1) is constrained to be on M2, so −∆f is a section of M2’s tangent bundle.

Specifically, suppose f : M1 → M2, and denote the image of each vertex
v ∈ K1 as f(v). The normal on M2 at f(v) is n(f(v)). Define the normal
component as

Definition 9. The normal component

(∆f(v))⊥ =< ∆f(v),n(f(v)) > n(f(v)), (12)

where <, > is the inner product in R3.

Definition 10. The absolute derivative is defined as

Df(v) = ∆f(v) − (∆f(v))⊥ (13)

Then equation (14) is δf = −Df × δt.

4 Conformal Spherical Mapping

Suppose M2 is S2, then a conformal mapping f : M1 → S2 can be constructed
by using the steepest descent method. The major difficulty is that the solution
is not unique but forms a Möbius group.

Definition 11. Mapping f : C → C is a Möbius transformation if and only if

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad − bc �= 0 (14)

All Möbius transformations form the Möbius transformation group. In order
to determine a unique solution we can add different constraints. In practice we
use the following two constraints: the zero mass-center constraint and a landmark
constraint.
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Definition 12. Mapping f : M1 → M2 satisfies the zero mass-center condition
if and only if ∫

M2

fdσM1 = 0, (15)

where σM1 is the area element on M1.

All conformal maps from M1 to S2 satisfying the zero mass-center constraint
are unique up to a Euclidean rotation group (which is 3 dimensional). We use
the Gauss map as the initial condition.

Definition 13. A Gauss map N : M1 → S2 is defined as

N(v) = n(v), v ∈ M1, (16)

n(v) is the normal at v.

Algorithm 1 Spherical Tuette Mapping

Input (mesh M ,step length δt, energy difference threshold δE), output(t :
M → S2) where t minimizes the Tuette energy.

1. Compute Gauss map N : M → S2. Let t = N , compute Tuette energy E0.
2. For each vertex v ∈ M , compute Absolute derivative Dt.
3. Update t(v) by δt(v) = −Dt(v)δt.
4. Compute Tuette energy E.
5. If E − E0 < δE, return t. Otherwise, assign E to E0 and repeat steps 2

through to 5.

Because the Tuette energy has a unique minimum, the algorithm converges
rapidly and is stable. We use it as the initial condition for the conformal map-
ping.

Algorithm 2 Spherical Conformal Mapping

Input (mesh M ,step length δt, energy difference threshold δE), output(h :
M → S2). Here h minimizes the harmonic energy and satisfies the zero
mass-center constraint.

1. Compute Tuette embedding t. Let h = t, compute Tuette energy E0.
2. For each vertex v ∈ M , compute the absolute derivative Dh.
3. Update h(v) by δh(v) = −Dh(v)δt.
4. Compute Möbius transformation ϕ0 : S2 → S2, such that

Γ (ϕ) =
∫

S2
ϕ ◦ hdσM1 ,ϕ ∈ Mobius(CP 1) (17)

ϕ0 = min
ϕ

||Γ (ϕ)||2 (18)

where σM1 is the area element on M1. Γ (ϕ) is the mass center, ϕ minimizes
the norm of mass center.
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5. compute the harmonic energy E.
6. If E − E0 < δE, return t. Otherwise, assign E to E0 and repeat step 2

through to step 6.

Step 4 is non-linear and expensive to compute. In practice we use the following
procedure to replace it:

1. Compute the mass center c =
∫

S2 hdσM1 ;
2. For all v ∈ M , h(v) = h(v) − c;
3. For all v ∈ M , h(v) = h(v)

||h(v)|| .

This approximation method is good enough for our purpose. By choosing the step
length carefully, the energy can be decreased monotonically at each iteration.

5 Optimize the Conformal Parameterization by
Landmarks

In order to compare two brain surfaces, it is desirable to adjust the conformal
parameterization and match the geometric features on the brains as well as
possible. We define an energy to measure the quality of the parameterization.
Suppose two brain surfaces S1, S2 are given, conformal parameterizations are
denoted as f1 : S2 → S1 and f2 : S2 → S2, the matching energy is defined as

E(f1, f2) =
∫

S2
||f1(u, v) − f2(u, v)||2dudv (19)

We can composite a Möbius transformation τ with f2, such that

E(f1, f2 ◦ τ) = min
ζ∈Ω

E(f1, f2 ◦ ζ), (20)

where Ω is the group of Möbius transformations. We use landmarks to obtain the
optimal Möbius transformation. Landmarks are commonly used in brain map-
ping. We manually label the landmarks on the brain as a set of sulcal curves [4],
as shown in Figure 5. First we conformally map two brains to the sphere, then
we pursue a best Möbius transformation to minimize the Euclidean distance
between the corresponding landmarks on the spheres. Suppose the landmarks
are represented as discrete point sets, and denoted as {pi ∈ S1} and {qi ∈ S2},
pi matches qi, i = 1, 2, . . . , n. The landmark mismatch functional for u ∈ Ω is
defined as

E(u) =
n∑

i=1

||pi − u(qi)||2, u ∈ Ω, pi, qi ∈ S2 (21)

In general, the above variational problem is a nonlinear one. In order to simplify
it, we convert it to a least squares problem. First we project the sphere to the
complex plane, then the Möbius transformation is represented as a complex
linear rational formula, Equation 14. We add another constraint for u, so that u
maps infinity to infinity. That means the north poles of the spheres are mapped
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to each other. Then u can be represented as a linear form az + b. Then the
functional of u can be simplified as

E(u) =
n∑

i=1

g(zi)|azi + b − τi|2 (22)

where zi is the stereo-projection of pi, τi is the projection of qi, g is the conformal
factor from the plane to the sphere, it can be simplified as

g(z) =
4

1 + zz̄
. (23)

So the problem is a least squares problem.

6 Experimental Results

The 3D brain meshes are reconstructed from 3D 256x256x124 T1 weighted SPGR
(spoiled gradient) MRI images, by using an active surface algorithm that deforms
a triangulated mesh onto the brain surface [5]. Figure 1(a) and (c) show the
same brain scanned at different times [4]. Because of the inaccuracy introduced
by scanner noise in the input data, as well as slight biological changes over time,
the geometric information is not exactly the same. Figure 1(a) and (c) reveal
minor differences.

(a) (b) (c) (d)

Fig. 1. Reconstructed brain meshes and their spherical harmonic mappings. (a) and
(c) are the reconstructed surfaces for the same brain scanned at different times. Due
to scanner noise and inaccuracy in the reconstruction algorithm, there are visible ge-
ometric differences. (b) and (d) are the spherical conformal mappings of (a) and (c)
respectively; the normal information is preserved. By the shading information, the
correspondence is illustrated.

The conformal mapping results are shown in Figure 1(b) and (d). From this
example, we can see that although the brain meshes are slightly different, the
mapping results look quite similar. The major features are mapped to the same
position on the sphere. This suggests that the computed conformal mappings
continuously depend on the geometry, and can match the major features con-
sistently and reproducibly. In other words, conformal mapping may be a good
candidate for a canonical parameterization in brain mapping.
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(a) Texture mapping of the sphere (b) Texture mapping of the brain

Fig. 2. Conformal texture mapping. The conformality is visualized by texture mapping
of a checkerboard image. The sphere is mapped to the plane by stereographic projec-
tion, then the planar coordinates are used as the texture coordinates. This texture
parameter is assigned to the brain surface through the conformal mapping between the
sphere and the brain surface. All the right angles on the texture are preserved on the
brain surface.

(a) Surface with 20,000 faces (b) Surface with 50,000 faces

Fig. 3. Conformal mappings of surfaces with different resolutions. The original brain
surface has 50,000 faces, and is conformally mapped to a sphere, as shown in (a). Then
the brain surface is simplified to 20,000 faces, and its spherical conformal mapping is
shown in (b).
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(a) Intersection angles (b) Angle distribution

Fig. 4. Conformality measurement. The curves of iso-polar angle and iso-azimuthal
angle are mapped to the brain, and the intersection angles are measured on the brain.
The histogram is illustrated.
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(a) (b) (c) (d)

Fig. 5. Möbius transformation to minimize the deviations between landmarks. The blue
curves are the landmarks. The correspondence between curves has been preassigned.
The desired Möbius transformation is obtained to minimize the matching error on the
sphere.

Fig. 6. Spherical conformal mapping of genus zero surfaces. Extruding parts (such as
fingers and toes) are mapped to denser regions on the sphere.

Figure 2 shows the mapping is conformal by texture mapping a checker board
to both the brain surface mesh and a spherical mesh. Each black or white square
in the texture is mapped to sphere by stereographic projection, and pulled back
to the brain. Note that the right angles are preserved both on the sphere and
the brain.

Conformal mappings are stable and depend continuously on the input ge-
ometry but not on the triangulations, and are insensitive to the resolutions.
Figure 3 shows the same surface with different resolutions, and their conformal
mappings. The mesh simplification is performed using a standard method. The
refined model has 50k faces, coarse one has 20k faces. The conformal mappings
map the major features to the same positions on the spheres.

In order to measure the conformality, we map the iso-polar angle curves and
iso-azimuthal angle curves from the sphere to the brain by the inverse conformal
mapping, and measure the intersection angles on the brain. The distribution of
the angles of a subject(A) are illustrated in Figure 4. The angles are concentrated
about the right angle.

Figure 5 shows the landmarks, and the result of the optimization by a Möbius
transformation. We also computed the matching energy, following Equation 19.
We did our testing among three subjects. Their information is shown in Table 1.
We took subject A as the target brain. For each new subject model, we found
a Möbius transformation that minimized the landmark mismatch energy on the
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maximum intersection subsets of it and A. As shown in Table 1, the matching
energies were reduced after the Möbius transformation.

The method described in this work is very general. We tested the algorithm
on other genus zero surfaces, including the hand and foot surface. The results
are illustrated in Figure 6.

7 Comparison with Other Work

Several other studies of conformal mappings between brain surfaces are reported
in [2,3]. In [2], Hurdal et al. used the circle packing theorem and the ring lemma
to establish a theorem: there is a unique circle packing in the plane (up to certain
transformations) which is quasi-conformal (i.e. angular distortion is bounded) for
a simply-connected triangulated surface. They demonstrated their experimental
results for the surface of the cerebellum. This method only considers the topology
without considering the brain’s geometric structure. Given two different mesh
structures of the same brain, one can predict that their methods may generate
two different mapping results. Compared with their work, our method really
preserves angles and establishes a good mapping between brains and a canonical
space.

Haker et al. [3] built a finite element approximation of the conformal mapping
method for brain surface parameterization. They selected a point as the north
pole and conformally mapped the cortical surface to the complex plane. In the
resulting mapping, the local shape is preserved and distances and areas are only
changed by a scaling factor. Since stereo projection is involved, there is significant
distortion around the north pole areas, which brings instability to this approach.
Compared with their work, our method is more accurate, with no regions of large
area distortion. It is also more stable and can be readily extended to compute
maps between two general manifolds.

Finally, we note that Memoli et al. [17] mentioned they were developing im-
plicit methods to compute harmonic maps between general source and target
manifolds. They used level sets to represent the brain surfaces. Due to the ex-
tensive folding of the human brain surface, these mappings have to be designed
very carefully.

Table 1. Matching energy for three subjects. Subject A was used as the target brain.
For subjects B and C, we found Möbius transformations that minimized the landmark
mismatch functions, respectively.

Subject Vertex # Face # Before After
A 65,538 131,072 - -
B 65,538 131,072 604.134 506.665
C 65,538 131,072 414.803 365.325
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8 Conclusion and Future Work

In this paper, we propose a general method which finds a unique conformal map-
ping between genus zero manifolds. Specifically, we demonstrate its feasibility
for brain surface conformal mapping research. Our method only depends on the
surface geometry and not on the mesh structure (i.e. gridding) and resolution.
Our algorithm is very fast and stable in reaching a solution. There are numerous
applications of these mapping algorithms, such as providing a canonical space
for automated feature identification, brain to brain registration, brain struc-
ture segmentation, brain surface denoising, and convenient surface visualization,
among others. We are trying to generalize this approach to compute conformal
mappings between nonzero genus surfaces.
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