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ABSTRACT 
Using spherical harmonics of an inverse conformal map, we com- 
pared hippocampal surfaces of sixteen Alzheimer (AD) and fourteen 
control subjects. Hippocampal surfaces were conformally mapped 
to a sphere. Maps were regularly sampled and exact, high-degree 
spherical harmonic transforms of the inverse maps were computed. 
Using the transforms shape descriptors col~esponding to the degree 
of the harmonics and invariant to translation, rotation, and scale were 
obtained and normalized against sample mean. Two-dimensional vi- 
sualizations ofthe shape descriptors were indicative of global as well 
as local shape features of hippocampal surfaces. These descriptors 
are potentially useful for visual detection of global patterns and cre- 
ation of population-based, probabilistic, disease-specific digital at- 
lases, especially for comparison of global shape features. 

1. INTRODUCTION 

Recent studies have confirmed a long-observed correlation be- 
tween changes in hippocampal shape and volume, and Alzheimer 
disease. Csemansb et al. [ l ]  have found shape analysis methods 
that could potentially predict the onset of symptoms using high di- 
mensional diffeomorphic transformations of a neuroanatomical tem- 
plate. Goldman et ai. [2] have found that some patients with con- 
firmed Alzheimer sometimes show few or no symptoms through- 
out much of their lives. Thus, changes in hippocampal shape char- 
acteristic of Alzheimer may take place years before patients show 
symptoms. Others [3] have even suggested the possibility of drug 
treatments capable of preventing or significantly slowing the pro- 
gression of the disease. All these studies suggest a future need for 
accurate methods of analyzing local as well as global features of 
hippocampal shape. In our study, we compared the shapes of 14 left 
and 14 right hippocampi of control subjects with 16 left and 16 right 
hippocampi of Alzheimer subjects using spherical harmonic trans- 
form applied to surface conformal mapping. The procedure went as 
follows: (1) Triangulation meshes were reconstructed from 3-D T1 
weighted SPGR (spoiled gradient) MRI images, by using an active 
surface algorithm that deforms a mesh onto the hippocampal surface 
[4]. (2) The meshes were then conformally mapped to a 2-sphere ac- 
cording to [5] and regularly sampled using linear interpolation, thus 
creating a spherical parameterization of the mesh. (3) A fast spheri- 
cal harmonic transform algorithm (FST) was then performed on the 
regularly sampled meshes according to [6]. (4)Lastly, rotationally 
invariant shape descriptors were calculated, normalized for easy vi- 
sual analysis and plotted in Et2. We hope these two-dimensional 
visualizations of global shape descriptors will serve as a guide for 
future statistical analysis similar to that in [I] and the creation of 
disease-specific brain atlases as in [7]. 

2. PREVIOUS WORK 

Various methods have been employed in the field of brain sub- 
manifold shape analysis. Gerig et al. [8] used spherical harrnon- 
ics to compute mean squared distance between lateral ventricles of 
twins as a measure of painvise shape difference by normalizing co- 
efficients with respect to volume and applying Parseval's equation. 
Although mathematically elegant, this method involves much com- 
putational error due to irregularity of sample points. This is be- 
cause spherical harmonic coefficients are approximated using a least 
squares solution. Another method is a high dimensional diffeomor- 
phic map directly from a subject manifold onto an exemplar target 
manifold following Miller [9]. With this method, manifolds are di- 
vided into subregions and an overall mean transformation between 
all subjects and the target manifold is found for each of (usually) 
many thousands of points. Then, using the mean transformation, the 
mean manifold is constructed. Thus, the perpendicular displacement 
between each subject's surface and the overall mean for each subre- 
gion is calculated as a measure of shape variation. Csernanksi et al. 
[I] have employed this method in their study of Alzheimer's. 

Fig. 1. Low-Pass Filtering: (a) through (d) are hippocampal sur- 
faces reconstructed from harmonics up to degree 10,20,63 and 127, 
respectively. (e) is the original hippocampus 

Use of spherical harmonic shape descriptors as initial representa- 
tion of shape is advantageous to methods involving neuroanatomical 
templates in that the transform is independent of any population- 
based averages and that it describes global shape features in addition 
to locally detailed features. Figure 1 illustrates this property: lower- 
order spherical harmonics correspond to the major shape features of 
a hippocampus, while those of higher order correspond to noise and 
local features. Further, the analogue of a template in this method is a 
fixed target space, the sphere, which eliminates error due to variabil- 
ity of subject-based templates. As shown in [5], the conformal map 
onto the sphere is invariant to the specifics of triangulation and rota- 
tion. That spherical harmonics-based shape descriptors are also rota- 
tionally invariant in effect guarantees rotational invariance through- 
out the entire procedure of our method. In addition, the regularity 
of sampled gn'd points allows for a fast calculation of spherical har- 
monic coefficients which are exact up to numerical error associated 
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with floating-point implementation. 

3. CONFORMAL MAPPING ONTO THE 2-SPHERE 

In this section we give the idea behind the conformal mapping 
algorithm following X. Gu, Y. Wang, et al. [5]. The idea is to first 
find a homeomorphism 7 : M --, S2 (monomorphism between two 
topological spaces that is continuous in both directions) and then op- 
timize it by minimizing harmonic energy. Here M is the manifold 
represented by a triangulation mesh of the object surface embedded 
in R3, defined by , ( K ,  g) where K is a simplicial complex and 
g : 1 K 1 + R3 is a function mapping the vertices of K to R3 . For 
simplicity, consider a scalar piecewise-linear continuous function 
f : M --i R . Let u ,  v E K be vertices, {u,  v }  E K the edge formed 
by U, v. (Here, we approximate all functions on M by continuous 
piecewise linear (PL) functions. Thus, the range-space of the confor- 
mal map is also a triangulation mesh.) Define the inner product on 
thespaceofPLfunctionsby < f ,g  >= !jCf,,w),K k,,,(f(u) - 
f ( v ) )  (g(u) - g(v)),  where k,,, is string energy. By choosing 
the correct string energy constants, harmonic energy is defined by 
E ( f )  =< f ,  f >= Cfu,w)EK kU,wllf(u) - f(v)1I2. Vector func- . . 

--i 

tions on M to are defined by f = ( f l ,  f 2 ,  f 3 )  . Vector harmonic - 
energy is E(  f ) = ELl E( f i ) .  Minimizing the harmonic en- 
ergy ensures that the map is harmonic i.e. that the laplacian is 
equal to zero. That the map is harmonic guarantees its conformality. 
Here, the initial homeomorphism used is the Gauss map defined by 
f 

f ( v )  = ?i'(v), v E M.  For details on the algorithm minimizing 
harmonic energy and additional constraints placed on the function 
to ensure convergence as well as an explanation in a more general 
setting, see [5]. 

4. SPHERICAL HARMONICS 

A function f : S2 --, @ is a spherical harmonic if it is the eigen- 
function of the Laplacian operator A f = X f where X is a scalar 
multiplier. A countable set of spherical harmonics provides an or- 
thonormal basis for the space of square-integrable functions on the 
sphere L2(S2). If we parameterize the sphere with a latitudinal co- 
ordinate c and a colatitudinal coordinate p, spherical harmonics are 
expressed explicitly: 

cients, implying that linear transformations (scaling, rotation, trans- 
lation) in the object space alter an object's spectrum. Thus, further 
registration is needed to make each individual coefficient completely 
invariant to linear transformations. While translational invariance is 
achieved easily, rotational invariance will be the subject of the con- 
cluding section. For now, we have achieved a limited rotational in- 
variance by simplifying the spectrum as described below. 

- 
24 i :a 1. ,a !a 

t (frequency) 

Fig. 2. Rotational invariance: A hippocampal surface was rotated 
45 degrees around each axis, mapped conformally and decomposed 
into new spherical harmonics. The plot shows the relative difference 
between the new and the original descriptors: [s(l) - s( l f )] /s ( l )  
versus degree I .  Error is within 1 %. 

5. SPHERICAL HARMONIC ANALYSIS AND THE 
SURFACE CONFORMAL MAP 

Let 7 : M C R3 + S2 be a conformal homeomorphism defined 
--, 

discretely by f = ( f l ,  fi, f 3 ) ,  as described in section (3), where 
-+ 

M is a mesh representing the object. Let f -' : S2 + R3 be the 
inverse map from the sphere onto the hippocampal surface, defined 
by the isomorphic property of the homeomorphism. We regularly 

--i 

sample f -' = (f;' , f ~ l ,  f;') using a matching area algorithm 
and linear interpolation, and apply the FST to each scalar component 
of the inverse map. This amounts to projecting the inverse of the dis- 
crete conformal map onto a finite-dimensional subspace of L2(S2). 
The result is a set of vector spherical harmonic coefficients in C3 

, where B is the bandwidth. The spectrum simplification neces- 
sary for rotational invariance comes from two key observations. 

for the degree 1 and order m ,  where 1 and m are integers with One is that the norm of a function in ~ ' ( 9 ' )  does not change 

ImJ < I .  Here, Plm(cos6') is the associated Legendre polynomial with rotation. The other is that for a spherical function pl E 
 span{^,-', q-'+l, ..., ~ 7 ,  given an element of the rotation group 

plrn (case) = ( l  -x2)  ' & (x2 - l)', which is a solution g E SO(3) and its associated operator A(g),  the transformed 
to the associated Legendre differential equation. Let f be in L'(S') function remains in the same subspace of L2(S2) : A(g) (p,) E 
. For a given order 1 and degree m ,  a spherical harmonic coefficient span{l'-', x-l+l, . . . , x l }  . n u s ,  
is defined by y(1, m )  =< f ,  Krn > , where < f ,  g  > is the usual 
L2 inner product in spherical coordinates. The spherical harmonic " 
expansionis the series f(B,$) = x ~ , x ~ = - ,  f?l ,rn)Y;"(~,m).  15 (l.m)12 = I I P ~ I I :  = I I A ( ~ ) ( P ~ ) I I :  = 2 lh(g)(pi)(l,m)l2 

m=-l m=-1 
The set of all coefficients F(1, m )  is called the spherical harmonic 
transform of f .  In practice, the transform is computed with a fast Further, the linearity of A(g)  implies (6', 4) = C;ii pl algorithm described in [6], which relies on regular mesh sampling. 
The transform is only computed up to a certain degree I < B, where A(9) [ f  ('3 d ) ]  = CLO' A ( g )  ( ~ 1 ) -  This the 

the limit B is called the bandwidth. definition. Returning to our original notation, we define spherical 

A consequence of Parseval's equation is that any function in harmonic shape descriptors = x?=i=, EL=-,  I Iz-'(l7 m )  I 1' 
L2(S2) is uniquely determined by its spherical harmonic coeffi- to be the squared Euclidean norms of squared L2-norms of the vector 
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inverse maps. Ln view of the three observations above, these descrip- 
tors should be invariant to rotation, as each of the inner sums is theo- 
retically invariant. It is also possible to make the coefficients transla- 
tionally invariant by simply disregarding the degree-zero coefficient, 
which is alone responsible for translation. Thus, we produce a quasi- 
unique multi-resolution global shape representation. Now, surface 
comparison is possible directly in the simplified spectrum domain 
without registration. 

6. EXPERIMENTAL RESULTS 

Our experimental results confirm rotational invariance (see fig. 2) 
up to discretization and sampling error. Relative error due to a ran- 
dom rotation is within 1 %. Although the initial descriptors are not 
based on any population averages, here we use sample-based nor- 
malization constants C(1) = & ~ z ,  c ~ Z  si(k)/si( l) ,  where 
N is the total number of meshes, si(k)  is the kth degree descriptor 
of the ith mesh and B is the bandwidth of the transform (note that 
the degree-zero coefficient is omitted). Normalized shape descrip- 
tors n(1) = s( l )C( l )  provide a measure of the ratio of the size of 
major features to smaller protrusions and highly localized features 
of an object against the sample mean. For example, the first de- 
gree harmonics form the "main ellipsoid" of the object (see [lo]). 
Suppose n(1) of a particular hippocampus is smaller in comparison 
with its lower degree n(1) for 1 # 1. We conclude that as compared 
to the sample mean, this hippocampus has more major curves and 
large protrusions with respect to its "main body." Shape descriptors 
are normalized further with respect to a fixed lower-degree descrip- 
tor for scale invariance. Thus, the main novelty of our method is that 
it provides an invariant multiresolution representation while making - 
comparisons across populations and frequencies meaningful. Figure 
3 illustrates 2-D visualizations of normalized shape descriptors sim- 
ilar to the example above. Figure 4 shows the original hippocampi 
described by the visualizations in Figure 3. 

Fig. 3. Plots of normalized descriptors for two hippocampi: higher 
relative magnitude in lower frequency descriptors of the solid line 
indicates a greater presence of low-frequency curves in the control 
hippocampus. 

We ran a 3-way ANOVA on normalized descriptors with hemi- 
sphere, diagnosis and frequency as factors. Only descriptors up to 
frequency 15 were considered, as they generate over 98 % of hip- 
pocarnpal harmonic energy. Further, because only a subset of the 
normalized spectrum was used, the sample-based constants are ob- 
jective. Most notably, the test yielded significant results for diag- 
nosis (df=l, F=4.061, a=.044), and interaction between diagnosis 
and hemisphere (df=l, F=7.520, a=.006). Other significant factors 
include hemisphere (df=l, F=6.429, a=.01 l), and interaction be- 
tween frequency and hemisphere (df=14, F=2.694, a=.001). Here, 

"df' stands for "degrees of freedom," "F' is the value from the F- 
distribution (a continuous distribution which arises when comparing 
variances between two samples) based on sums of squares and "a" 
is the tail of the distributin at the given F-value. When examining the 
ANOVA, we found that frequencies 2,6, 8, 12, 14 and 15 give the 
most significant interaction between diagnosis and hemisphere. We 
computed the average of frequency-wise differences in descriptor 
magnitude between the right and left hemispheres for each subject 
only for the frequencies above. An independent samples t-test of the 
differences average between cntrol and AD subjects confirms their 
significance: (df=28,t=-2.692, P=.012). In particular, we noted that 
while the average was slightly higher among AD subjects in the right 
hemisphere, it was significantly lower in the left comapred to con- 
trol subjects. This is consistent with [I], where significant reduction 
in surface area was found specifically in the lateral zone of the left 
hippocampus. 

7. CONCLUSION AND FUTURE WORK 

Our spherical harmonic shape descriptors were found to be a 
good means of quantifying shape features in hippocampal surfaces. 
These rotationally and translationally invariant descriptors have 
potential to be quite useful in creating population-based disease- 
specific brain atlases. Further, an advantage of using spectrum-based 
descriptors lies in their ability to quantify aspects of global shape un- 
detectable with region-by-region comparison to population averages. 
In experiments, our global metric was found to have comparable sen- 
sitivity to local deformations as some localized metrics described 
above, giving purpose to future refinements of our method. 

Fig. 4. Two original hippocampal surfaces: (a) is a left hippocampus 
of a female Alzheimer subject and (b) is a left hippocampus of a 
female control subject, corresponding to Figure 3. 

To further develop use of spherical harmonics as a means of shape 
representation in the future, we would like to: 

(1)Develop a direct registration method via spherical cross- 
correlation 

(2)Develop a spherical harmonic representation which is intrinsi- 
cally optimal with respect to the conformal structure of the surface, 
thus integrating the theory of spherical harmonics with global con- 
formal mapping 

(3)Develop a better understanding of the interplay between spher- 
ical harmonic shape representation and moments expressed in terms 
of shape characteristics, as can be analogously done for the 2-D case 
1101. 

(4)Test more hippocampal surfaces with our method. The Labo- 
ratory on Neuro Imaging at UCLA has kindly provided us with more 
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than 122 new hippocampal models. To make the first step in this di- 
rection, we are currently transforming the models into mesh format. 

8. REFERENCES 

[l] J. G. Csernansky, L. Wang, J. Swank, J. P. Miller, M. Gado, D. 
McKeel, M. 1. Miller, and J. C. Moms, "Preclinical detection 
of Alzheimer's disease: hippocampal shape and volume predict 
dementia onset in the elderly:' Neuroimage. Vol25 Issue 3, pp 
783-792,15 April 2005 

[2] W. P. Goldman, J. L. Price, M. Storandt, E. A. Grant, D. W. 
McKeel Jr., E. H. Rubin and J. C. Moms, "Absence of cogni- 
tive impairment or decline in preclinical Alzheimer's disease:' 
Neurology 56, pp. 361-367,2001. 

[3] N. Bodick, F. Forette, D. Hadler, R. J. Harvey, P. Leber, 1. G. 
McKeith, P. J. Riekkinen, M. N. Rossor, P. Scheltens, S. Shi- 
mohama, R. Spiegel, S. Tanaka, L. J. Thal, Y. Urata, P. White- 
house and G. Wilcock, "Protocols to demonstrate slowing of 
Alzheimer disease progression." The Disease Progression Sub- 
Group, Alzheimer Dis. Assoc. Disord. (Suppl 3), pp. 50-53. 
November 1997 

[4] P. M. Thompson and A. Toga, "A framework for computational 
anatomy," in Comput. Visual. Sci., vol. 5,2002, pp. 1-12 

[5] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S. Yau "Genus 
Zero Surface Conformal Mapping and Its Application to Brain 
Surface Mapping" EEE Transactions on Medical Imaging, Vol. 
23, No. 8, p. 949, August 2004 

[6] D. Healy, D. Rockmore, P. Kostelec, and S. Moore, "Ffts for the 
2-sphere-Improvements and variations:' J. Fourier Anal. Appli- 
cat., vol. 9, no. 4, pp. 341-385,2003. 

[7] P. Thompson, M. Mega, C. Vidal, J. Rapoport, and A. Toga, 
"Detecting disease-specific patterns of brain structure using cor- 
tical pattern matching and a population-based probabilistic brain 
atlas," in Proc.17th Int. Conf. Information Processing in Medi- 
cal Imaging (lPM12001), Davis, CA, June 18-22,2001, pp. 488- 
501. 

[8] G. Gerig, M. Styner, D. Jones, D. Weinberger, and J. Lieberman, 
"Shape analysis of brain ventricles using spharm:' presented at 
the lEEE Workshop on Mathematical Methods in Biomedical 
Image Analysis (MMBLA'Ol), Kauai, HI, December 2001. 

[9] M. 1. Miller, "Computational anatomy: shape, growth, and at- 
rophy comparison via diffeomorphisms" Neuroimage Vol. 23, 
Supp 1, pp. S19-S33,2004. 

[lo] C. Brechbuhler, G. Gerig, and 0. Kubler, "Surface 
parametrization and shape description:' Proc. SPIE (Visualiza- 
tion Biomed. Comp. 1992), vol. 1808, pp. 80-89,1992. 

1111 A. Cuyt, J. Sijbers, B. Verdonk, D. Van Dyck, "Region and 
Contour Identification of Physical Objects" Appl. Num. Anal. 
Comp. Math. 1, No. 2,343 - 352,2004 

[12] J. G. Csemansky, S. Joshi, L. Wang, J. W. Haller, M. Gado, 
J. l? Miller, U. Grenander, and M. I. Miller "Hippocampal mor- 
phometry in schizophrenia by high dimensional brain mapping," 
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11406-1 1411, Septem- 
ber 1998. 

[13] P. M. Thompson, M.S. Mega, R.P. Woods, C.1. Zoumalan, 
C.J. Lindshield, R.E. Blanton, J. Moussai, C.J. Holmes, J.L. 
Cummings, A.W. Toga "Cortical change in Alzheimer's disease 
detected with a disease-specific population-based brain atlas." 
Cereb Cortex. January 2001; 1 l(1): 1-16. 

The 18th International Conference on Pattern Recognition (ICPR'OG) 
0-7695-2521-0106 $20.00 0 2006 

[14] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz "Rotation Invari- 
ant Spherical Harmonic Representation of 3D Shape Descrip- 
tors" Proc. of Symposium on Geometry Processing pp. 167-175, 
June 2003 


