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Abstract

This paper describes an algorithm to classify each given
document zone into one of nine classes and provides a pro-
tocol for its performance evaluation. The classification
scheme uses an optimized binary decision tree and Viterbi
algorithm for HMM to find the optimal solution. Our al-
gorithm was trained and tested on a total of 24,177 zones
within the 1600 images from UWCDROM I database. Its
accuracy rate is 98.45% with a@ mean false alarm rate of
0.50%.

1. Introduction

A technical document often contain various types of
zones, such as text, math, figure zones, etc. Each of these
zones has its own charactetistic features. This paper de-
scribes an algorithm which assigns zone classes to zones
within a given document image.

In the zone classification, each zone is reduced to a fea-
ture factor — a set of measurements of pre-defined proper-
ties. The features include the run length mean and variance,
spatial mean and variance of black and white pixels, etc. A
probabilistic model is used to classify each zone on the basis
of its feature vector [5]. We employ a decision tree classi-
fier in the classification process (Section 3). Two methods
are used to optimize the decision tree classifier to eliminate
the data over-fitting problem. We also incorporate context
constraints within neighboring zones for some zones and
model zone class context constraints as a Hidden Markov
Model and used Viterbi algorithm [10] to obtain optimal
classification results,

Qur earlier work [11] also uses vectors of 67 features.
Our new model uses only 25 (Section 2). The algorithm
given in Liang et. al [7] discriminates text-zones and none-
text Zones based on glyphs widths and heights. The algo-
rithim in Chetverikov et al. [4] is based on texture features of
zones. Le et. al [6] proposed a text-zone logical labeling to
label text-blocks as titles, authors, affitiations and abstracts.

We define a performance criteria to evaluate the perfor-
mance of our algorithm and we conducted a set of experi-
ments evaluating the results in accordance with the perfor-
mance criteria. The zones are the zone ground-truth enti-
ties from the UWCDROM III document image database [8].
The database includes 1,600 scientific and technical docu-
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ment images with a total of 24, 177 zones. The zone classes
we consider are text with font size < 18pt, text with font
size > 19pt, math, table, halftone, map/drawing, ruling,
logo, and others. Our algorithm accuracy rate is 98.45%
and the mean false alarm rate is 0.50% (Section 4).

2. Features for Zone Content Classification

Every zone in the document is a rectangular area. Black
pixels are assumed to be foreground and the white pixels
are background. For each zone, run length and spatial fea-
tures are computed for each line along two different canon-
ical directions: horizontal, diagonal. These two directions
are shown in Figure 1. In the notations, we use subscript b
and d to represent these two directions. When discriminat-
ing between foreground and background features is neces-
sary, we use superscript 0 and 1 to represent foreground and
background features, respectively. For example, rlmean$,
represents background run length mean feature computed
in horizontal direction. A total of 25 features are computed
for each zone. In the following, we describe each feature in

Figure 1. Mustrates the two directions in which we compute
run tength and spatial features.(a) horizontal; (b) diagonal.
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2.1. Run Length Features

A run length is a list of contignous foreground or back-
ground pixels in a given direction. A total of 10 run length
features are used, they include foreground/background run
length mean and variance in each of the two directions.

Let RL;, and R L) denote the foreground run length sets
on the two directions. |RL}], and [RL}| constitute the first
2 features.

The next four features include foreground and back-
ground run length mean features on two directions in a



iven zone. Denote them as rlmean®, rimean’, rimean)
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The next four features are foreground and background
run length variance features on the two directions in a gwen
zone. Denote them as rlvarl, rlvar, rlvarl and rivar}).
They are computed as follows.
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2.2. Spatial Features

Four spatial features are designed to capture the fore-
ground pixel distribution information. We denote the fore-
ground pixel set in a given zone as F. Spatial mean, u, and
spatial variance, 4, can be defined as

1
EP A

PEF

= 3 (wy — Y

i}" B
where wp, is a weight assigned to each foreground pixel p.
With two directions, we obtain four features.

As shown in Figure 1, we compute the run lengths from
two different directions. In each direction, we start com-
puting from a point on a zone border and continue at a
given direction until we hit another zene border again. We
call such a computation route a run segment. For every
run segment the sum of foreground run lengths gives the
run segment projection. Given a direction, each foreground
pixel belongs to only one run segment. We associate each
foreground pixel with a weight of run segment projection.
We let the foreground pixels in the same run segment have
the same weights so we have two different weight defi-
nitions according 1o each direction. We denote the start-
ing and ending pixel coordinates of a horizontal run seg-
mentas (zh1,¥h1), (Th2, Yn2). Wedenoteby (241, 94.1),
{Z4,1,y4,1) the starting and ending pixel coordinates of a di-
agonal run segment.

The weights for horizontal and diagonal directions are
denoted as wy, and wq, wh = yp1 and wg = yg5 — Tq2.

Denote the set of run segments in two directions as Ln
and L4. For a run segment, say, [, we denote its horizontal
run segment projection on it as projy . In our algorithm,
we compule spatial means and spatial variances as follows.
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2.3. Autocorrelation Features

For each run segment, we define four functions: run seg-
ment project, number of foreground run lengths, run length
mean and spatial mean. We obtain 8 features by computing
their autocorrelation functions using Fourier transform.

Denote the set of run length in a horizontal and a diag-
onal run segment as RLy; and RLg;. The run segment
projection function has been defined earlier, projn, and
projq:. The function of the number of foreground runs on
each run segment are straightforward. The function of run
length mean on each run segment can be defined as follows.

Proja
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Let (Zh,s,Yn,s}, (The,Yne) be the two end points of a
horizontal run length, and (Zd.s,¥d,s)> (Td,e, yd.c) be the
two end points of the diagonal run length. The definition of
pos and leng functions are given as
lengn el = The —Thoa
lengd,ri = Ta,e — Fde

The spatial mean function for each line can be defined as
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After we compute one function on each run segment,
we can get a sequence of values, indexed by the run seg-
ment number. Using the Fast Fourier Transform [9], we can
gel the autocorrelation functions value for every function.
Each feature is the slope of the tangent to the autocorrela-
tion function values whose indexes are close to 0. We used
general linear least squares method [9] to compute the slope
of the points near 0.

2.4. Background Features

Although some background analysis techniques can be
found in the literature({1],[2]), none of them, to our know}-
edge, has extensively studied the statistical characteristics



of their background structure. Our signature-like back-
ground features are designed to give us more information
on the distributions of the big foreground chunks in a given
zone. We define large horizontal blank block and large ver-
tical blank block as in [12]. The background feature is the
total area of large horizontal and large vertical blank blocks,
A

2.5, Text Glyph Feature

Most of zones have some text glyphs. The information
of how many text glyphs a given zone has is also a useful
feature. The number of text glyphs in this zone, W, normal-
ized by the zone area is the text glyph feature.

The so-called text glyphs are not from any OCR output.
They are outputs of a statistical glyph filter. The inputs of
this filter are the glyphs after finding connected component
operation. The statistical glyph filter classifies each con-
nected component into one of two classes: text glyph and
ron-text glyph. The filter uses a statistical method to clas-
sify glyphs and was extensively trained on UWCDROM III
document image database.

2.6. Column Width Ratio Feature

It is a common observation that math zones and figure
zones have a smaller width compared to text zones. For
any zone, the quotient of the zone width to the width of its
column is calculated as W,ﬁﬂ—m: where C' is the zone
width and Width ofrmn is the width of the text colummn in
which the zone is.

3. Classification Process

A decision tree classifier makes the assignment through a
hierarchical, tree-like decision procedure. For the construc-
tion of a decision tree [5], we nead a training set of feature
vectors with true class labels. At each node, the discrimi-
nant function splits the training subset into two subsets and
generates child nodes. A discriminant threshold is chosen
at each node sach that it minimizes an impurity value of
the distribution mode at that node. The process is repeated
at each newly generated child node until a stopping condi-
tion is satisfied and the node is declared as a leaf node on a
majority vote.

In building a decision tree classifier, there is a risk of
memorizing the training data, in the sense that nodes near
the bottom of the tree represent the noise in the sample, As
mentioned in [3], some methods were employed to make
better classification. We used two methods [12] to eliminate
data over-fitting in decision tree classifier.

. To further improve the zone classification result, we
make use of context constraint in some zone set. We model
context constraint as a Markov Chain and use the Viterbi al-
gorithm( [10]) to find the most likely state sequence. To ap-
ply the Viterbi algorithm{ [10]), we have to know the proba-
bility that each zone belongs to each class. This probability
is readily estimated from the training data set by decision
tree structure. The details can be found in [12].
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4. Experiments and Results

A hold-out method is used for the error estimation in our
experiment. We divided the data set into 9 parts. We trained
the decision tree on the first 4 parts, pruned the tree using
another 4 parts, and then tested on the last 1 part. To train
the Markov model, we trained on the first 8 parts and tested
it on the last T part. This is repeated 9 times. Then the
combined 9 part results are put together to estimate the total
error rate [3].

True Assigned Class
Class a b

2 Paa jpab

b Py Py

Tahble 1. Possible rrue- and detected-state combination for two
classes

The output of the decision tree is compared with the zone
labels from the ground truth in order to evaluate the perfor-
mance of the algorithm. A contingency table is computed
to indicate the number of zones of a particular class label
that are identified as members of one of the nine classes.
The rows of the contingency table represent the true classes
and the columns represent the assigned classes. We com-
pute four rates here: Correct Recognition Rate (CR), Mis-
recognition Rate (MR), False Alarm Rate (FR), Accuracy
Rate (AR). Suppose we only have two classes: a and b. The
possible true- and detected-state combination is shown in
Table 1. We compute the four rates for class a as follows:

Paa Pub
CR= ——— MR= ————
Pun"'Pnb Pac+Pab
FR= —th__ ap_ Paa + Pos
Pba"'Phb Paa+Pnb+PM+Pba

Our algorithm was trained and tesied on a total of
24,177 zones within the 1600 images from UWCDROM 111
database. Each zone in the databases belonged to nine dif-
ferent classes: 2 text classes of font size 4 — 18pt and font
size 19 — 32pt), math, tabie, halftone, map/drawing, ruling,
logo and others. For a total of 24,177 zones, the accuracy
rate was 98.45% and mean false alarm rate was 0.50%, as
shown in Table 2.

In Figures 2 and 3, we show some failed cases of our al-
gorithm. Figure 2(a) is a Table zone misclassified as Math
zone due to the presence of many numerals and operators.
Figure 2(b) is a Map/Drawing zone misclassified as Table
zone in that the content of the figure is just a table. Fig-
ure 3(a) shows a most frequent error of our current algo-
rithm. Our algorithm classified a Math zone into Text 1
zone class. Sometimes the algorithm still facks a good abil-
ity to detect such a single line math equation zone which,
even worse sometimes, includes some description words.
Figure 3(b) shows an error example in which a Math zone
was misclassified as a table zone because of its sparse na-
ture.

5. Conclusion

Given the segmented document zones, correctly deter-
mining the zone content class is very important for the fur-



Ti T2 M T H M/D R L O CR MR

T 21426 13 40 7 1 7 1 3 3 9580% | 0.40% |
T2 19 104 1 0 1 2 0 0 1 8T 13% | 18.75% |
M 47 - i 686 2 0 18 1 1 2 90.50% | 9.50%
T 6 0 4 162 0 35 0 [ 2 7714% | 22.86% |
H 1 [} [] 1 343 27 0 0 0 92.00% | 8.00%
M/D 2 3 20 20 28 648 1 i 5 89.01% | 10.99%
R 3 0 2 0 0 2 424 0 1 98 15% 1.85%
L 7 3 1 0 0 0 0 2 0 1538% { 8462%
4] 4 0 2 0 2 7 I 0 3 TTET% | 12.13% |
FR 334% | 012% | 030% | 0.13% | 0.13% | 042% | 002% [ 0.02%] 0.06%

Table 2. Contingency table showing the number of zones of a pasticular class that are assigned as members of each possible zone class in
UWCDROM IIL In the table, i, T5, M, T, H, M D, R, L, O represent text with font size < 18pt., text with font size > 19pt., math, table,

halftone, map/drawing zone, ruling, logo, others, respectively.

ther processes. We used only 25 features. We trained and
pruned the decision tree. We modeled context constraints
as HMM in some zone set. In 1,600 UWCDROM III im-

— o —— ages, our zone classification method can classify each given
The extent of decreasing heat level zone into one of nine classes. Compared with our previ-
Total rexults | MI0ST pig<1480 | T pig<1470 ous work [12], the accuracy rate is compatible and the false
gﬁ(xm=m,) %‘_:‘%(,m=w,) ;—:—::ﬁ(*lw=67‘i) alarm rate was reduced from 0.53% te 0.5(_)%. Since we
used 25 instead 69 features, the classification speed was
(a) much improved.

= T T T TS We also showed some failed cases. Many errors are due
F| ™ W SW S| SE to the difficult discrimination between single line math and
Corve oyl ) I X ) text 1 class. Our future work will include the development
Cavetcomd | - o] 6] 09 of math zone identification technique, modeling zone con-

v M ul o tent dependency feature in a more general zone set.
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