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Abstract

Two surfaces are conformally equivalent if there exists

a bijective angle-preserving map between them. The Te-

ichmüller space for surfaces with the same topology is a

finite-dimensional manifold, where each point represents a

conformal equivalence class, and the conformal map is ho-

motopic to the identity map. In this paper, we propose a

novel method to apply conformal equivalence based shape

index to study brain morphometry. The shape index is de-

fined based on Teichmüller space coordinates. It is intrinsic,

and invariant under conformal transformations, rigid mo-

tions and scaling. It is also simple to compute; no registra-

tion of surfaces is needed. Using the Yamabe flow method,

we can conformally map a genus-zero open boundary sur-

face to the Poincaré disk. The shape indices that we com-

pute are the lengths of a special set of geodesics under hy-

perbolic metric. By computing and studying this shape in-

dex and its statistical behavior, we can analyze differences

in anatomical morphometry due to disease or development.

Study on twin lateral ventricular surface data shows it may

help detect generic influence on lateral ventricular shapes.

In leave-one-out validation tests, we achieved 100% accu-

rate classification (versus only 68% accuracy for volume

measures) in distinguishing 11 HIV/AIDS individuals from

8 healthy control subjects, based on Teichmüller coordi-

nates for lateral ventricular surfaces extracted from their

3D MRI scans.Our conformal invariants, the Teichmüller

coordinates, successfully classified all lateral ventricular

surfaces, showing their promise for analyzing anatomical

surface morphometry.

1. Introduction

3D Surface shape analysis is a key research topic in

face recognition [12], anatomical modeling, statistical com-

parisons of anatomy and medical image registration. In

research studies that analyze brain morphometry, many

shape analysis methods have been proposed, such as spher-

ical harmonic analysis (SPHARM) [4], medial represen-

tations (M-reps) [14], and minimum description length ap-

proaches [5], etc.; these methods may be applied to analyze

shape changes or abnormalities in subcortical brain struc-

tures. Even so, a stable method to compute transformation-

invariant shape descriptors would be highly advantageous

in this research field. Here we propose a novel and in-

trinsic method to compute a Teichmüller space coordinate

(shape indices) and we apply it to study brain morphometry

in Alzheimers disease (AD), Williams syndrome (WS) and

HIV/AIDS. Our Teichmüller space coordinates are based on

the surface conformal structure and can be accurately com-

puted using the Yamabe flow method.

According to Klein’s Erlangen program, different ge-

ometries study the invariants under different transforma-

tion groups. Conformal geometry corresponds to the angle-

preserving transformations. If there exists a conformal map

between two surfaces, they are conformally equivalent. All

surfaces can be classified by the conformal equivalence re-

lation. For surfaces with the same topology, the Teichmüller

space is a natural finite-dimensional manifold, where each

point represents a conformal equivalence class and the dis-

tance between two shapes can be accurately measured. A

shape index can be defined based on Teichmüller space co-

ordinates. This shape index is intrinsic, and invariant under

conformal transformations, rigid motions and scaling. It is

simple to compute; no surface registration is needed. It is

very general; it can handle all arbitrary topology surfaces



with negative Euler numbers. By computing and studying

Teichmüller space coordinates and their statistical behav-

ior, we can provide a promising approach to describe local

changes or abnormalities in anatomical morphometry due

to disease or development.

In this work, we propose to study the Teichmüller space

coordinate based shape index with genus-zero surfaces with

three boundaries. With the discrete version of the surface

Ricci flow method (also called the discrete Yamabe flow),

we conformally projected the surfaces to the hyperbolic

plane and isometrically embedded them in the Poincaré

disk. The proposed Teichmüller space coordinates are the

lengths of a special set of geodesics under this special hy-

perbolic metric. For applications in brain morphometry re-

search, we first converted a closed 3D surface model of

the cerebral cortex into a multiple-boundary surface by cut-

ting it along selected anatomical landmark curves. Sec-

ondly, we conformally parameterized each cortical surface

using the Yamabe flow method. Next, we computed the

Teichmüller space coordinates - the lengths of three bound-

aries (geodesics) on the hyperbolic space - as a 3×1 feature

vector. This measure is invariant in the hyperbolic plane un-

der conformal transformations of the original surface, and is

the same for surfaces that differ at most by a rigid motion.

We tested our algorithm on cortical and lateral ventricu-

lar surfaces extracted from 3D anatomical brain MRI scans.

We applied our algorithm to analyze ventricular shapes in

3D volumetric MRI scans from 76 identical and 56 same-

sex fraternal twins. The proposed Teichmüller space co-

ordinate features picked up stronger generic influence than

volume measures. The proposed algorithm can map the pro-

file of differences in surface morphometry between healthy

controls and subjects with HIV/AIDS. Finally, we used a

nearest-neighbor classifier together with our feature vector

on the lateral ventricular surface data from a group of 11
HIV/AIDS individuals and a group of 8 matched healthy

control subjects. Our classifier achieved a 100% accuracy

rate and outperformed a nearest neighbor classifier based

on total brain volume, which achieved an overall 68.42%
accuracy rate on the same dataset.

Our major contributions in this work include: a way

to compute a new conformal equivalence based shape in-

dex, the Teichmüller space coordinate, on the Poincaré

disk in the parameter domain of a surface. Our proposed

singularity-free Yamabe flow method preserves this invari-

ant very well, so our method offers a stable way to calculate

it in 2D parametric coordinates. To the best of our knowl-

edge, it is the first work to apply the Teichmüller space

coordinate to brain morphometry research. We treated the

Teichmüller space coordinates as a random vector; by cal-

culating the Mahalanobis distance from any vector to in-

dividual members of two groups of subjects, our method

achieved a 100% accuracy rate in classifying the lateral ven-

tricular surfaces of HIV/AIDS individuals versus matched

healthy control subjects. Our work may inspire more re-

searchers to adopt conformal invariant based shape analysis

in their own research.

1.1. Related Work

In the computational analysis of brain anatomy, volu-

metric measures of structures identified on 3D MRI have

been used to study group differences in brain structure and

also to predict diagnosis [1]. Recent work has also used

shape-based features [13], analyzing surface changes using

pointwise displacements of surface meshes, local deforma-

tion tensors, or surface expansion factors, such as the Jaco-

bian determinant of a surface-based mapping. For closed

surfaces homotopic to a sphere, spherical harmonics have

commonly been used for shape analysis, as have their gener-

alizations, e.g., eigenfunctions of the Laplace-Beltrami op-

erator in a system of spherical coordinates. These shape in-

dices are also rotation invariant, i.e., their values do not de-

pend on the orientation of the surface in space. Shape analy-

sis based on spherical harmonic basis functions (SPHARM)

is usually conducted in three steps, based on a pre-computed

spherical parameterization of the surface: (1) estimating SH

coefficients for the x, y and z-components with a least-

squares procedure, (2) normalizing the orientation of the

first-order ellipsoid, and (3) reconstructing the surface at

regularly spaced points on the sphere [16]. Chung et al. [4]

proposed a weighted spherical harmonic representation. For

a specific choice of weights, the weighted SPHARM is

shown to be the least squares approximation to the solution

of an anisotropic heat diffusion on the unit sphere. Davies

et al. studied anatomical shape abnormalities in schizophre-

nia, using the minimal distance length approach to statisti-

cally align hippocampal parameterizations [5]. For classi-

fication, Linear Discriminant Analysis (LDA) or principal

geodesic analysis can be used to find the best discriminant

vector in the feature space for distinguishing diseased sub-

jects from controls. Gorczowski [7] presented a framework

for discriminant analysis of populations of 3D multi-object

sets. In addition to a sampled medial mesh representation,

m-rep [14], they also considered pose differences as an ad-

ditional statistical feature to improve the shape classifica-

tion results.

With the Ricci flow method, Wang et al. [19] solved the

Yamabe equation and conformally mapped the cortical sur-

face of the brain to a Euclidean multi-hole punctured disk.

Gu et al. [8] applied the surface Ricci flow method to study

general 3D shape matching and registration. The hyperbolic

Ricci flow has also been applied to study 3D face match-

ing [20]. Recently, Jin et al. [11] introduced the Teichmüller

shape space to index and compare general surfaces with var-

ious topologies, geometries and resolutions.



2. Theoretical Background and Definitions

This section briefly introduces the theoretic background

necessary for the current work. For details, we refer readers

to [10] for algebraic topology and [9] for differential geom-

etry.

Surface Ricci curvature flow Let S be a surface embed-

ded in R
3. S has a Riemannian metric induced from the

Euclidean metric of R
3, denoted by g. Suppose u : S → R

is a scalar function defined on S. It can be verified that

ḡ = e2ug is also a Riemannian metric on S conformal to

the original one.

The Gaussian curvatures will also be changed accord-

ingly. The Gaussian curvature will become

K̄ = e−2u(−∆gu + K),

where ∆g is the Laplacian-Beltrami operator under the

original metric g. The above equation is called the Yamabe

equation. By solving the Yamabe equation, one can design

a conformal metric e2ug with a prescribed curvature K̄.

The Yamabe equation can be solved using the Ricci flow

method. The Ricci flow deforms the metric g(t) according

to the Gaussian curvature K(t) (induced by itself), where t

is the time parameter

dgij(t)

dt
= 2(K̄ − K(t))gij(t).

The uniformization theorem [15] for surfaces says that

any metric surface admits a Riemannian metric of constant

Gaussian curvature, which is conformal to the original met-

ric. Such metric is called the uniformization metric.

Poincaré disk model In this work, we use the Poincaré

disk to model the hyperbolic space H
2, which is the unit

disk |z| < 1 in the complex plane with the metric ds2 =
4dzdz̄

(1−zz̄)2 . The rigid motion is the Möbius transformation

z → eiθ z − z0

1 − z̄0z
,

where θ and z0 are parameters. The geodesics on the

Poincaré disk are arcs of Euclidean circles, which intersect

the boundary of the the unit circle at right angles.

Suppose S is a surface with a negative Euler number, and

its hyperbolic uniformization metric is g̃. Then its univer-

sal covering space (S̃, g̃) can be isometrically embedded in

H
2. Any deck transformation of S̃ is a Möbius transforma-

tion, which is a transformation from one universal covering

space to another universal covering space and keeps projec-

tion invariant, and called a Fuchsian transformation. The

deck transformation group is called the Fuchsian group of

S.

Let φ be a Fuchsian transformation, let z ∈ H
2,

the attractor and repulser of φ are limn→∞ φn(z) and

limn→∞ φ−n(z) respectively. The axis of φ is the unique

geodesic through its attractor and repulser.

Teichmüller Space Let (S1,g1) and (S2,g2) be two met-

ric surfaces, and let f : S1 → S2 be a differential map be-

tween them. If the pull-back metric induced by f satisfies

the following condition:

g1 = e2λf∗g2,

then we say the map is conformal. Two metric surfaces are

conformally equivalent, if there exists an invertible confor-

mal map between them. All surfaces may be classified using

this conformal equivalence relation.

All conformal equivalence classes of surface with a fixed

topology form a finite-dimensional manifold, the so-called

Teichmüller space. Teichmüller space is a shape space,

where a point represents a class of surfaces, and a curve

in Teichmüller space represents a deformation process from

one shape to the other. The coordinates of the surface in Te-

ichmüller space can be explicitly computed. The Rieman-

nian metric of The Teichmüller space is also well-defined.

In this work, only genus-zero surfaces with three bound-

aries are considered, which are also called as topological

pants. Let (S,g) be a pair of topological pants with a Rie-

mannian metric g, with three boundaries

∂S = γ1 + γ2 + γ3.

Let g̃ be the uniformization metric of S, such that the Gaus-

sian curvature is equal to −1 at every interior point, and

the boundaries are geodesics. If the length of the boundary

γi is li under the uniformization metric, then (l1, l2, l3) are

the Teichmüller coordinates of S in the Teichmüller space

of all conformal classes of a pair of pants. Namely, if two

surface share the same Teichmüller coordinates, they can be

conformally mapped to each other.

Figure 1 (a) illustrates a pair of pants with the hyper-

bolic metric, such that the three boundaries, γi, i = 1 − 3,

are geodesics. The τi are the shortest geodesics connect-

ing γj , γk, so τi is orthogonal to both γj and γk. The γi

are divided to two segments with equal lengths by τj , τk.

τ1, τ2 and τ3 split the surface to two identical hyperbolic

hexagons, with edge lengths γ1

2 , τ3,
γ2

2 , τ1,
γ3

2 , τ2. Further-

more, all the internal angles are right angles. The lengths

of τ1, τ2, τ3 are determined by γ1, γ2, γ3. For the mapping

in Figure 1 (a) to be made, the pair of pants can have any

geometry, as long as it has the topology shown. It helps us

to study general brain anatomical structures.

3. Computational Algorithms

This section details the algorithms for computing the hy-

perbolic metric, and the Teichmüller coordinates.



3.1. Hyperbolic Ricci Flow Algorithm

In practice, most surfaces are approximated by discrete

triangular meshes. Let M be a two-dimensional simplicial

complex. We denote the set of vertices, edges and faces by

V, E, F respectively. We call the ith vertex vi; edge [vi, vj ]
runs from vi to vj ; and the face [vi, vj , vk] has its vertices

sorted counter-clockwise. Figure 1 (b) shows the hyperbolic

triangle, and its associated edge lengths li, yi, corner angles

θi and conformal factors ui.

A discrete metric is a function l : E → R
+, such that tri-

angle inequality holds on every face, which represents the

edge lengths. In this work, we assume all faces are hyper-

bolic triangles. The discrete curvature K : V → R is de-

fined as the angle deficit, i.e., 2π minus the surrounding

corner angles for an interior vertex, and π minus the sur-

rounding corner angles for a boundary vertex.

γ1
γ2

γ3

γ3

2

γ1

2

γ2

2

τ2
τ1

τ3

τ3

2

τ1

2

τ2

2

l1

l2
l3

u1

u2

u3

y1

y2y3

θ1

θ2

θ3

(a) (b)

Figure 1. (a). A pair of hyperbolic pants. (b) Discrete surface

Yamabe flow.

3.1.1 Discrete conformal deformation

Suppose the mesh is embedded in R
3, so it has the induced

Euclidean metric. We use l0ij to denote the initial induced

Euclidean metric on edge [vi, vj ].
Let u : V → R be the discrete conformal factor. The

discrete conformal metric deformation is defined as

sinh(
yk

2
) = eui sinh(

lk

2
)euj . (1)

The discrete Yamabe flow is defined as

dui

dt
= −Ki, (2)

where Ki is the curvature at the vertex vi.

Let u = (u1, u2, · · · , un) be the conformal factor vector,

where n is the number of vertices, and u0 = (0, 0, · · · , 0).
Then the discrete hyperbolic Yamabe energy is defined as

E(u) =

∫ u

u0

n
∑

i=1

Kidui. (3)

The differential 1-form ω =
∑n

i=1 Kidui is closed. We

use ck to denote cosh(yk). By direct computation, it can be

shown that on each triangle,

∂θi

∂uj

= A
ci + cj − ck − 1

ck + 1
,

where

A =
1

sin(θk) sinh(yi) sinh(yj)
,

which is symmetric in i, j, so ∂θi

∂uj
=

∂θj

∂ui
. It is easy to

see that ∂Ki

∂uj
=

∂Kj

∂ui
, which implies dω = 0. The discrete

hyperbolic Yamabe energy is convex. The unique global

minimum corresponds to the hyperbolic metric with zero

vertex curvatures.

This requires us to compute the Hessian matrix of the

energy. The explicit form is given as follows:

∂θi

∂ui

= −A
2cicjck − c2

j − c2
k + cicj + cick − cj − ck

(cj + 1)(ck + 1)

The Hessian matrix (hij) of the hyperbolic Yamabe en-

ergy can be computed explicitly. Let [vi, vj ] be an edge,

connecting two faces [vi, vj , vk] and [vj , vi, vl]. Then the

edge weight is defined as

hij =
∂θ

jk
i

∂uj

+
∂θ

lj
i

∂uj

.

also for

hii =
∑

j,k

∂θ
jk
i

∂ui

,

where the summation goes through all faces surrounding vi,

[vi, vj , vk].
The discrete hyperbolic energy can be directly optimized

using Newton’s method. Because the energy is convex, the

optimization process is stable.

Given the mesh M , a conformal factor vector u is admis-

sible if the deformed metric satisfies the triangle inequality

on each face. The space of all admissible conformal fac-

tors is not convex. In practice, the step length in Newton’s

method needs to be adjusted. Once the triangle inequality

no longer holds on a face, then an edge swap needs to be

performed.

3.2. Algorithm for Computing the Teichmüller Co­
ordinates

Figure 2 illustrates the major steps for computing the Te-

ichmüller space coordinates. Frame (a) illustrates the input

metric surface with three boundaries γ1, γ2, and γ3. Frame

(b) and (c) illustrate the curve τ1, which connects γ2, γ3,

and τ2 connecting γ1, γ3. Then we slice the surface S along

τ1 and τ2 to obtain a simply connected surface, S̃. By run-

ning the hyperbolic Yamabe flow, the hyperbolic metric is

obtained. S̃ then can be isometrically embedded onto the

Poincaré disk as shown in frame (d). The boundaries of

the original surface γ1, γ2, γ3 map to geodesics. In frame

(d), the Möbius transformation φ1 that transforms τ1 to τ−1
1
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Figure 2. Computing Teichmüller coordinates.

can be directly computed. Similarly the Möbius transforma-

tion φ2 can also be easily computed, which maps τ2 to τ−1
2 .

Then {φ1, φ2} are the generators of the Fuchsian group of

S. In frame e, the embedding of S̃ in the hyperbolic disk is

transformed by a Fuchsian transformation. Each color rep-

resents one copy of S̃, transformed by a Fuchsian transfor-

mation. Frame (f) shows the computation of the τi’s, which

are the shortest geodesics connecting the geodesic bound-

aries γj , γk.

γ1

γ2

γ3

γ3

τ2

τ1

τ
−1

1

τ
−1

2

τ3

Figure 3. A Poincaré disk embedding for Teichmüller space coor-

dinate computation.

The final result is shown in Figure 3. The original sur-

face is separated by τ1, τ2, τ3 into two right-angled hy-

perbolic hexagons. The edge lengths of the hexagon are

γ1

2 , τ2,
γ3

2 , τ1,
γ2

2 , τ3.

4. Experimental Results

We applied our shape analysis to various anatomical sur-

faces extracted from 3D MRI scans of the brain. In this

paper, the segmentations are regarded as given, and result

from automated and manual segmentations detailed in other

prior works, e.g. Chou et al. [3] and Thompson et al. [17].

4.1. Application to Studying Brain Surface Mor­
phometry

Figure 4 (a)-(b) illustrate the Teichmüller space coordi-

nate computation on a left hemisphere cortical surface with

3 selected landmark curves: the Central Sulcus, Superior

Temporal Sulcus, and Primary Intermediate Sulcus. After

we cut a cortical surface open along the selected landmark

curves, a cortical surface becomes topologically equiva-

lent to a genus-zero surface with three open boundaries.

The surface is topologically equivalent to the topological

pant surface (Figure 1 (a)). We can compute its conformal

parameterization to the Poincaré disk with the hyperbolic

Ricci flow and further compute its Teichmüller space coor-

dinate. (a)-(b) illustrates a cortical surface and its embed-

ding in the Poincaré disk. The three boundaries are labeled

as γi and two shortest geodesics that connect boundaries are

labeled as τi.

Lots of studies have associated accelerated dilation of

the cerebral ventricles with risk for and progression of

HIV/AIDS, dementia and MCI in elderly subjects [17, 2, 6,

3]. Ventricular changes reflect atrophy in surrounding struc-

tures, and ventricular measures and surface-based maps can

provide sensitive assessments of tissue reduction that cor-

relate with cognitive deterioration in illnesses. However,

the concave shape, complex branching topology and nar-

rowness of the inferior and posterior horns have made au-

tomatic analyses more difficult. To model the lateral ven-

tricular surface, we automatically locate and introduce three

cuts on each ventricle. The cuts are motivated by examining

the topology of the lateral ventricles, in which several horns

are joined together at the ventricular “atrium” or “trigone”.

We call this topological model, creating a set of connected

surfaces, a topology optimization operation. After model-

ing the topology in this way, a lateral ventricular surface, in

each hemisphere, becomes an open boundary surface with

3 boundaries, a topological pant surface.

After the topology optimization, a ventricular surface is

topologically equivalent to a topological pant surface. We

can then compute its Teichmüller space coordinate. Fig-

ure 4 illustrates how to compute Teichmüller space coordi-

nates for a lateral ventricle. In the figure, γ1, γ2, and γ3 are

labeled boundaries and τ1 and τ2 are the shortest geodesics

between boundaries. Figure 4 (b) illustrates the surface with



Figure 4. Computing Teichmüller space coordinates for a corti-

cal surface and a ventricle surface. (a) is a left hemisphere corti-

cal surface with 3 selected landmark curves. (b) shows the corti-

cal surface is isometrically flattened to the Poincaré disk. (c) and

(d) illustrate a ventricular surface with labeled boundaries and its

Poincaré disk flattening result.

the hyperbolic metric that is isometrically flattened onto

the Poincaré disk. When we make the topological change,

we make sure each new boundary has the same Euclidean

length across different surface. As a result, the lengths of

each boundary under the Poincaré disk metric are valid met-

rics for studying lateral ventricular surface morphometry.

4.2. Genetic Influences on Ventricular Structure in
Twins

We analyzed ventricular shapes in 3D volumetric MRI

scans from 76 identical and 56 same-sex fraternal twins,

scanned as part of a 5-year research project [3]. For each

ventricular surface, we computed its Teichmüller space co-

ordinates as a 3 × 1 vector. With the L2 norm, we hypoth-

esized that our shape index could help find each subjects

twin pair in the database, assuming it has a closer shape

index than the rest of surfaces.

In a preliminary research, we compared our shape index

with volume measures. For a given ventricular surface, we

computed and sorted the distances to all other ventricular

surfaces. Then we counted how many “wrong” ventricular

surface that has a shorter distance than the one to its twin

peer. We called this number as the number of comparison

errors associated with the ventricular surface. We define the

error rate as the ratio of the error number and the number of
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Figure 5. Comparison of shape feature based algorithm and vol-

ume measure based algorithm to study genetic influence on ven-

tricular shape in twins. (a) is the result on identical twin group and

(b) is on same-sex fraternal twin group. The Teichmüller space

based shape index captures reported a lower number of compari-

son errors. It may indicate that the Teichmüller space based shape

index may be more useful to detect genetic effects than volume

measures.

all surfaces compared. We computed the comparison errors

for each ventricular surface with our shape index and vol-

ume measures. Figure 5 illustrates the number of compari-

son errors of two shape measures for all ventricular surfaces

on 76 identical twins (MZ) and 56 same-sex fraternal twins

(DZ). We also calculate the difference of number of com-

parison errors of volume measure and that of shape index

measure. From the figure, we can learn that shape index

feature did a better job than volume feature for MZ twin

data because all volume feature error numbers are larger

than the shape index error numbers. For 76 identical twins,

the median error rate was 14.3% (versus 24.7% error rate

for volume measures). For 56 same-sex fraternal twins, the

median error rate was 22.3% (versus 26.4% error rate for

volume measures). We also compared the number of com-

parison errors between each pair of twins and found that

the median and mean of comparison errors between pairs of

identical twins were consistently less than those of fraternal

twins. This suggests that the Teichmüller space based shape



index may be more useful to detect genetic effects than vol-

ume measures.

4.3. Lateral Ventricle Shape Analysis of HIV/AIDS

In another experiment, we compared ventricular surface

models extracted from 3D brain MRI scans of 11 individ-

uals with HIV/AIDS and 8 control subjects [17]. We auto-

matically perform topology optimization on each ventricu-

lar surface and compute their lengths in the Poincaré disk by

the Yamabe flow method. For each pair of ventricular sur-

faces, we obtained a 6 × 1 vector, t = (t1, t2, ...t6), which

consists of 3 boundary lengths for the left ventricular sur-

face and 3 boundary lengths for right ventricular surface.

Given this Teichmüller space coordinate based feature vec-

tor, we apply a nearest neighbor classifier based on the Ma-

halanobis distance, which is

d(t) =
√

(t − µTc
)T Σ−1

Tc
(t − µTc

)

+
√

(t − µTa
)T Σ−1

Ta
(t − µTa

)

where µTc
, µTa

, ΣTc
and ΣTa

are the feature vector mean

and covariance for the two groups, respectively. We classify

t based on the sign of the distance of d(t), i.e., the subject

that is closer to one group mean is classified into that group.

For this data set, we performed a leave-one-out test. Our

classifier successfully classified all 19 subjects to the correct

group and achieved a 100% accuracy rate [18].

For comparison, we also tested a nearest neighbor clas-

sifier associated with a volume feature vector. For each pair

of ventricular surface, we measure their volumes, (vl, vr).
We also use a nearest neighbor classifier based on the Ma-

halanobis distance, which is

d(v) =
√

(v − µVc
)T Σ−1

Vc
(v − µVc

)

+
√

(v − µVa
)T Σ−1

Va
(v − µVa

)

where µVc
, µVa

, ΣVc
and ΣVa

are the feature vector mean

and covariance two groups, respectively. We classify v

based on the sign of the distance of d(v), i. e., the subject

that is closer to one group mean is classified into that group.

In the data set, we performed a leave-one-out test. The clas-

sifier based on the simple volume measurement successfully

classified only 13 out of 19 subjects to the correct group and

achieved a 68.42% accuracy rate.

Figure 6 shows an interesting experimental result. Two

pairs of lateral ventricular surfaces, are shown, from (a) a

healthy control individual, and (b) from an individual with

HIV/AIDS. Both of them have highly irregular shapes. Al-

though generally HIV/AIDS makes the lateral ventricle di-

late, here the ventricle from the control group has a big-

ger volume than the one from the HIV/AIDS group on both

sides. The volume differences between these two subjects

are about 0.62% and 5.2% of the mean left and right side

volumes in the whole data set. The volume-based classifier

assigned all of these ventricular surfaces to the incorrect

diagnostic groups while the Teichmüller space coordinate

based classifier classified each of them correctly.

Figure 6. Lateral ventricular surfaces of a control subject (a) and

an individual with HIV/AIDS. The volume of lateral ventricular

surface of the control subject is greater than that of the HIV/AIDS

individual. Our Teichmüller space coordinate feature successfully

classified these surfaces, when entered into a nearest neighbor

classifier. The volume measurement based nearest neighbor clas-

sifier achieved a 68.42% accuracy rate.

Studies of ventricular morphometry have also used 3D

statistical maps to correlate anatomy with clinical mea-

sures, but automated ventricular analysis is still difficult be-

cause of their highly irregular branching surface shape. The

new Teichmüller space shape descriptor requires more val-

idation on other data sets, these experimental results sug-

gest that (1) ventricular surface morphometry is altered in

HIV/AIDS; (2) volume measures are not sufficient to distin-

guish HIV patients from controls; and (3) our Teichmüller

space feature vector can be used to classify control and pa-

tient subjects. Our ongoing work is studying the correlation

between the proposed feature vector and clinical measures

(e.g., future decline) in an Alzheimer’s Disease data set.

5. Conclusion and Future Work

In this paper, we propose a stable way to compute Te-

ichmüller space coordinate for a surface with a certain type

of branching topology. We applied it as a shape index to

study brain morphometry for genetic shape analysis and

HIV/AIDS. We included our shape index in a nearest neigh-

bor classifier that correctly classified all lateral ventricle sur-

faces from 8 control and 11 HIV/AIDS individuals (versus

only 68% accuracy rate for volume measure). Although our

current work focuses on topological pant surfaces, for sur-

faces with more complicated topologies, their Teichmüller

coordinates can still be computed using the hyperbolic met-

ric. If the surface has Euler number χ, χ < 0, the surface

can be decomposed to −χ number of pants, where the cut-

ting curves are also geodesics under the hyperbolic metric.



Furthermore, two pants sharing a common cutting curve can

be glued together with a specific twisting angle. The lengths

of all cutting geodesics and the twisting angles associated

with them form the Teichmüller coordinates of the surface.

In the future, we will further explore and validate numerous

applications of the Teichmüller shape space in neuroimag-

ing and shape analysis research.
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