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Abstract. One important problem in human brain mapping research is to
locate the important anatomical features. Anatomical features on the cortical
surface are usually represented by landmark curves, called sulci/gyri curves.
These landmark curves are important information for neuroscientists to study
brain disease and to match different cortical surfaces. Manual labelling of these
landmark curves is time-consuming, especially when large sets of data have to
be analyzed. In this paper, we present algorithms to automatically detect and
match landmark curves on cortical surfaces to get an optimized brain conformal

parametrization. First, we propose an algorithm to obtain a hypothesized land-
mark region/curves using the Chan-Vese segmentation method, which solves a
Partial Differential Equation (PDE) on a manifold with global conformal pa-
rameterization. This is done by segmentating the high mean curvature region.
Second, we propose an automatic landmark curve tracing method based on
the principal directions of the local Weingarten matrix. Based on the global
conformal parametrization of a cortical surface, our method adjusts the land-
mark curves iteratively on the spherical or rectangular parameter domain of the
cortical surface along its principal direction field, using umbilic points of the
surface as anchors. The landmark curves can then be mapped back onto the
cortical surface. Experimental results show that the landmark curves detected
by our algorithm closely resemble these manually labeled curves. Next, we
applied these automatically labeled landmark curves to generate an optimized
conformal parametrization of the cortical surface, in the sense that homologous
features across subjects are caused to lie at the same parameter locations in
a conformal grid. Experimental results show that our method can effectively
help in automatically matching cortical surfaces across subjects.

1. Introduction. Finding feature points or curves in medical images is an impor-
tant problem in medical imaging. For example, anatomical features on the cortical
surface can be represented by landmark curves, called sulci/gyri curves. These
sulci/gyri curves are important information for neuroscientists to study brain dis-
ease and to match different cortical surfaces. It is time-consuming to label these
landmark curves manually, especially when there are large sets of data. Therefore,
an automatic or semi-automatic way to detect these feature curves is necessary.
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In this paper, we trace the landmark curves on the cortical surfaces automati-
cally based on the principal directions. Suppose we are given the global conformal
parametrization of the cortical surface. Fixing two endpoints, called the anchor
points, we trace the landmark curve iteratively on the spherical/rectangular param-
eter domain along one of the two principal directions. Consequently, the landmark
curves can be mapped onto the cortical surface. To speed up the iterative scheme,
a good initial guess of the landmark curve is necessary. Therefore, we propose a
method to get a good initialization by extracting the high curvature region on the
cortical surface using Chan-Vese segmentation [1]. This involves solving a PDE
(Euler-Lagrange equation) on the manifold using the global conformal parametriza-
tion. As an application, we used these automatic labeled landmark curves to get
an optimized brain conformal mapping, which can match important anatomical
features across subjects. This is based on the minimization of a combined energy
Enew = Eharmonic+λElandmark. Our paper is organized as follows: the basic math-
ematical theory will be discussed in section 2. The computational algorithm of the
conformal parameterization and curvature matrix will be discussed in sections 3
and 4. In sections 5 and 6, the algorithm of the automatic landmark tracking and
its application to the optimization of brain conformal mapping will be discussed.
The experimental results will be studied in section 7. Finally, the conclusion and
future works will be discussed in section 8.

1.1. Previous work. Automatic detection of sulcal landmarks on the brain has
been widely studied by different research groups. Prince et al. [2] has proposed
a method for automated segmentation of major cortical sulci on the outer brain
boundary. This is based on a statistical shape model, which includes a network of
deformable curves on the unit sphere, seeks geometric features such as high cur-
vature regions, and labels such features via a deformation process that is confined
within a spherical map of the outer brain boundary. Lohmann et al. [3] has proposed
an algorithm that automatically detects and attributes neuroanatomical names to
the cortical folds using image analysis methods applied to magnetic resonance data
of human brains. The sulci basins are segmented using a region growing approach.
Zeng et al. [4] has proposed a method to automate intrasulcal ribbon finding, by
using the cortex segmentation with coupled surfaces via a level set methods, where
the outer cortical surface is embedded as the zero level set of a high-dimensional
distance function. Recently, Kao et al. [5] presented a sequence of geometric al-
gorithms to automatically extract the sulcal fundi and represent them as smooth
polylines lying on the cortical surface. Based on geodesic depth information, their
algorithm extracts sulcal regions by checking the connectivity above some depth
threshold. After extracting endpoints of the fundi and then thinning each con-
nected region with fixed endpoints, the curves are then smoothed using weighted
splines on surfaces.

Optimization of surface diffeomorphisms by landmark matching has been studied
intensively. Gu et al. [6] proposed to optimize the conformal parametrization by
composing an optimal Möbius transformation so that it minimizes the landmark
mismatch energy. The resulting parameterization remains conformal. Wang et
al. [7] proposed a new framework that combines genus zero surface conformal map-
ping with some explicit geometric feature based constraints. The framework has
the advantages that the constrain energy is dramatically reduced while the map’s
conformality is significantly preserved. Glaunes et al. [8] proposed to generate large
deformation diffeomorphisms of the sphere onto itself, given the displacements of a
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finite set of template landmarks. The diffeomorphism obtained can match the geo-
metric features significantly but it is, in general, not a conformal mapping. Leow et
al. [9] proposed a level set based approach for matching different types of features,
including points and 2D or 3D curves represented as implicit functions. Cortical
surfaces were flattened to the unit square. Nine sulcal curves were chosen and rep-
resented by the intersection of two level set functions They were used to constrain
the warp of one cortical surface onto another. The resulting transformation was
interpolated using a large deformation momentum formulation in the cortical pa-
rameter space, generalizing an elastic approach for cortical matching developed in
Thompson et al. [10].

2. Basic mathematical theory. Firstly, a diffeomorphism φ : M → N is a
conformal mapping if it preserves the first fundamental form up to a scaling factor
(the conformal factor). Mathematically, this means that ds2M = λφ∗(ds2N ), where
ds2M and ds2N are the first fundamental form on surfaces M and N , respectively and
λ is the conformal factor [11].

Next, the normal curvature κn of a Riemann surface in a given direction is the
reciprocal of the radius of the circle that best approximates a normal slice of the
surface in that direction, which varies in different directions. It follows that: κn =

v
T

IIv = v
T

(

e f
f g

)

v for any tangent vector v. II is called the Weingarten matrix

and is symmetric. Its eigenvalues and eigenvectors are called principal curvatures

and principal directions respectively. The mean of the eigenvalues is the mean

curvature. A point on the Riemann surface at which the Weingarten matrix has
the same eigenvalues is called an umbilic point [12].

3. Computation of conformal parameterization. It is well known that any
genus zero Riemann surfaces can be mapped conformally to a sphere. For the
diffeomorphism between two genus zero surfaces, we can get a conformal map by
minimizing the harmonic energy [6]. By setting the zero of mass constraint, there
exists a unique conformal mapping up to Möbius transformation. For high genus
surfaces, Gu and Yau [13] proposed an efficient approach to parameterize surfaces
conformally using a set of connected 2D rectangles. They compute a holomorphic
1-form on the Riemann surface, using concepts from homology and cohomology
group theory, and Hodge theory. (See Figure 1 left [14]). We can summarize the
algorithm with the following five steps (For details, please refer to [13]):
Step 1: Given a high genus surface, find the homology basis {ξ1, ..., ξ2g} of its
homology group.
Step 2: Given the homology basis {ξ1, ..., ξ2g}, compute its dual basis {w1, ..., w2g}
which is called the cohomology basis.
Step 3: Diffuse the cohomology basis elements to harmonic 1-forms. This can be
done by solving the following simultaneous equations:
(1) dw = 0 (closedness) (2) ∆w = 0 (harmonicity) (3)

∫

ξi
wj = δij (duality)

The existence of solution is guaranteed by Hodge theory.
Step 4: Compute the Hodge star conjugate {∗w1, ...,

∗ w2g} of {w1, ..., w2g}
Step 5: Integrate the holomorphic 1-form and get the conformal mapping: φ(x) =
∫

γ
w + i∗w, where w = Σλiwi

The above five steps allow us to compute a conformal parametrization from the
surface onto the 2D domain.
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Figure 1. Left: Global conformal parametrization of the entire
cortical surface onto the 2D rectangle. By introducing cutting
boundaries on the cortical surface, the genus of the surface is in-
creased. Holomorphic 1-form and the conformal parametrization
can be found. The boundaries of the rectangle corresponds to the
cutting boundaries on the surface. Right: A single face (triangle)
of the triangulated mesh.

4. Solving PDEs on surfaces using the global conformal parameteri-

zation. We propose to solve PDEs on surfaces by using the global conformal
parametrization. The main idea is to map the surface conformally to the 2D rect-
angles with the minimum number of coordinates patches. The problem can then
be solved by solving a modified PDE on the 2D parameter domain. To do this,
we have to use a set of differential operators on the manifold, namely, the covari-
ant derivative. With the conformal parametrization, the covariant derivative can
be formulated easily with simple formulas on the paramter domains (See Table 1).
Once the PDE on the 3D surface is reformulated to the corresponding PDE on
the 2D domain, we can solve the PDE on 2D by using some well-known numerical
schemes. Since the Jacobian of the conformal mapping is simply a multiplication
of the conformal factor, the modified PDE on the parameter domain will be very
simple and easy to solve.

5. Algorithm for automatic landmark tracking. In this section, we discuss
our algorithm for automatic landmark tracking.

5.1. Computation of principal direction fields from the global conformal

parametrization. Denote the cortical surface by C. Let φ : D → C be the global
conformal parametrization of C where D is a rectangular parameter domain. Let λ
be the conformal factor of φ. Similar to Rusinkiewicz’s work [15], we can compute
the principal directions, and represent them on the parameter domain D. This is
based on the following three steps:
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Table 1. Illustrates a list of formulas for some standard differen-
tial operators on a general manifold.

1. ∇Mf =
∑

i,j g
ij∂jf∂i, where (gij) is the inverse of the

Riemannian metric (gij). With the conformal parametrization φ,
the conformal factor λ,

∇Mf = Dxf i +Dyf j,

where (i, j) = ( ∂
∂x
/
√

< ∂
∂x
, ∂

∂x
>, ∂

∂y
/
√

< ∂
∂y
, ∂

∂y
>)

= 1√
λ
( ∂

∂x
, ∂

∂y
).

2. Suppose h : M → R is a smooth function,
Length of h−1(0) =

∫

M
δ(h)

√
< ∇Mh,∇Mh >dS

=
∫

M

√

< ∇MH(h),∇MH(h) >dS

=
∫

C
δ(h ◦ φ)

√
λ ||∇h ◦ φ||dxdy

=
∫

C

√
λ ||∇H(h ◦ φ)||dxdy

where H is the Heaviside function.
3. For a differential operator on vector field, the covariant derivative

satisfies the following properties:
(P1) ∇fX1+gX2

Y = f∇X1
Y + g∇X2

Y for f, g ∈ C∞(M);
(P2) ∇X(aY1 + bY2) = a∇XY1 + b∇XY2, a, b ∈ R;
(P3) ∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M).
Suppose {∂i} is the coordinate basis of the vector field, then

< ∇∂i
∂j , ∂l >= 1/2(∂igjl + ∂jgli − ∂lgij),

∇∂i
∂j = Γm

ij∂m,
where Γm

ij = 1
2λ

(∂igjm + ∂jgmi − ∂mgij).
4. For the divergence and Laplacian, we have

divM (Σ2
i=1Xi

∂
∂xi

) =
∑2

i=1
1
λ
∂i(Xiλ),

△Mf =
∑2

j=1(1/λ) ∂j∂jf .

5. Suppose C is a curve represented by the zero level set of
φ : M → R,

Geodesic curvature of C = divM ( ∇M φ
||∇M φ|| ).

Step 1 : Per − Face Curvature Computation

Let u =

(

1√
λ

0

)

and v =

(

0
1√
λ

)

be the directions of an orthonormal coordinate

system for the tangent plane (represented in the parameter domain D). We can
approximate the Weingarten matrix II for each face (triangle). For a triangle with
three well-defined directions (edges) together with the differences in normals in
those directions (Refer to Figure 1 right), we have a set of linear constraints on the
elements of the Weingarten matrix, which can be determined using the least square
method.
Step 2 : Coordinate system Transformation

After we have computed the Weingarten matrix on each face in the (uf , vf )
coordinate system, we can average it with contribution from adjacent triangles.
Suppose that each vertex p has its own orthonormal coordinate system (up, vp). We
have to transform the Weingarten matrix tensor into the vertex coordinates frame.
The first component of II, expressed in the (up, vp) coordinate system, can be found
as:
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ep = uT
p IIup = (1, 0)

(

ep fp

fp gp

)

(1, 0)T

Thus,

ep = (up · uf , up · vf )II(up · uf , up · vf )T

We can find fp and gp similarly.
Step3 : Weighting

The question about how much of the face curvature should be accumulated at
each vertex is very important because different meshes have different resolution at
different position. Thus, an aprropriate weighting function can help to reduce the
error in the curvature approximation significantly. For each face f which is adjacent
to the vertex p, we take the weighting wf,p to be the area of f divided by the squares
of the lengths of the two edges that touch the vertex p. The weighting function we
use can take care of the different resolution at different location of the mesh and
effectively produce more accurate estimation of the curvature, normal and so on.

5.2. Variational Method for Landmark Tracking. Given the principal direc-

tion field
−→
V (t) with smaller eigenvalues on the cortical surface C, we propose a

variational method to trace the sulcal landmark curve iteratively, after fixing two
anchor points (a & b) on the sulci. Let φ : D → C be the conformal parametrization
of C, < ·, · > to be its Riemannian metric and λ to be its conformal factor. We
propose to locate a curve −→c : [0, 1] → C with endpoints a and b, that minimizes
the following energy functional:

Eprincipal(
−→c ) =

∫ 1

0

|
−→c ′

√

< −→c ′,−→c ′ >M

−
−→
V ◦ −→c |2Mdt =

∫ 1

0

|
−→γ ′

|−→γ ′|
−

−→
G(−→γ )|2dt

where −→γ = −→c ◦ φ−1 : [0, 1] → D is the corresponding iteratively defined curve on the
parameter domain; −→

G(−→γ ) =
√

λ(−→γ )
−→
V (−→γ ); | · |2M =< ·, · >M and | · | is the (usual) length

defined on D. By minimizing the energy E, we minimize the difference between
the tangent vector field along the curve and the principal direction field −→

V . The
resulting minimizing curve is the curve that is closest to the curve traced along the
principal direction. Let:−→
G = (G1, G2, G3);

−→
K = (K1,K2,K3) =

−→γ ′

|−→γ ′| −
−→
G(−→γ )

−→
L 1 = (1,0,0)

|−→γ ′| − γ′

1

−→γ
|−→γ ′|3 ;

−→
L 2 = (0,1,0)

|−→γ ′| − γ′

2

−→γ
|−→γ ′|3 ;

−→
L 3 = (0,0,1)

|−→γ ′| − γ′

3

−→γ
|−→γ ′|3

Based on the Euler-Lagrange equation, we can locate the landmark curve itera-
tively using the steepest descent algorithm:

d−→γ
dt

= Σ3
i=1[Ki

−→
L i]

′ +Ki∇Gi

(See Appendix)

5.3. Landmark Hypothesis by Chan-Vese Segmentation. In order to speed
up the iterative scheme, we decided to obtain a good initialization by extracting the
high curvature regions on the cortical surface using the Chan-Vese (CV) segmenta-
tion method [1, 16]. We can extend the CV segmentation on R

2 to any arbitrary
Riemann surface M such as the cortical surface.
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Let φ : R
2 → M be the conformal parametrization of the surface M . We propose

to minimize the following energy functional:

F (c1, c2, ψ) =

∫

M

(u0 − c1)
2H(ψ)dS

+

∫

M

(u0 − c2)
2(1 −H(ψ))dS

+ ν

∫

M

|∇MH(ψ)|MdS

where ψ : M → R is the level set function and | · |M =
√
< ·, · > and u0 is the

mean curvature function on the cortical surface.
With the conformal parametrization, we have:

F (c1, c2, ψ) =

∫

R2

λ(u0 ◦ φ− c1)
2H(ψ ◦ φ)dxdy

+

∫

R2

λ(u0 ◦ φ− c2)
2(1 −H(ψ ◦ φ))dxdy

+ ν

∫

R2

√
λ|∇H(ψ ◦ φ)|dxdy

For simplicity, we let ζ = ψ ◦ φ and w0 = u0 ◦ φ. Fixing ζ, we must have:

c1(t) =

∫

Ωw0H(ζ(t, x, y))λdxdy
∫

Ω
H(ζ(t, x, y))λdxdy

;

c2(t) =

∫

Ω
w0(1 −H(ζ(t, x, y))λdxdy

∫

Ω(1 −H(ζ(t, x, y)))λdxdy

Fixing c1, c2, the Euler-Lagrange equation becomes:

∂ζ

∂t
= λδ(ζ)[ ν

1

λ
▽ ·(

√
λ

∇ζ
||∇ζ|| ) − (w0 − c1)

2 + (w0 − c2)
2]

Now, the sulcal landmarks on the cortical surface lie at locations with relatively
high curvature. To formulate the CV segmentation, we can consider the intensity
term as being defined by the mean curvature. Sulcal locations can then be circum-
scribed by first extracting out the high curvature regions. Fixing two anchor points
inside the extracted region, we can get a good initialization of the landmark curve
by looking for a shortest path inside the region that joins the two points. We select
two umbilic points as the anchor points. By definition, an umbilic point on a man-
ifold is a location at which the two principal curvatures are the same. Therefore,
the umbilic points are the ’singularities’ of the surface. Also, the umbilic points are
the positions where the principal directions are not well-defined. (In other words,
Eprincipal is not well defined at these points.) If there are multiple umbilic points
are found in one region, we select the two that are furthest apart.

6. Optimization of brain conformal parametrization. In brain mapping re-
search, cortical surface data are often mapped conformally to a parameter do-
main such as a sphere, providing a common coordinate system for data integration
[6, 17, 18]. As an application of our automatic landmark tracking algorithm, we
use the automatically labeled landmark curves to generate an optimized conformal
mapping on the surface, in the sense that homologous features across subjects are
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Figure 2. Automatic landmark tracking using a variational ap-
proach. Top : With the global conformal parameterization of the
entire cortical surface, we trace the landmark curves on the pa-
rameter domain along the edges whose directions are closest to
the principal direction field. It gives a good initial guess of the
landmark curve (blue curve). The landmark curve is then evolved
to a deeper region (green curve) using our variational approach.
Bottom : Ten sulcal landmarks are automatically traced using our
algorithm.
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caused to lie at the same parameter locations in a conformal grid. This matching
of cortical patterns improves the alignment of data across subjects. This is done
by minimizing the compound energy functional Enew = Eharmonic + λElandmark,
where Eharmonic is the harmonic energy of the parameterization and Elandmark

is the landmark mismatch energy. Here, automatically traced landmark (contin-
uous) curves are used and the correspondence are obtained using the unit speed
reparametrization.

Suppose C1 and C2 are two cortical surfaces we want to compare. We let
φ1 : C1 → S2 be the conformal parameterization of C1 mapping it onto S2. Let
{pi : [0, 1] → S2} and {qi : [0, 1] → S2} be the automatic labeled landmark
curves, represented on the parameter domain S2 with unit speed parametriza-
tion, for C1 and C2 respectively. Let h : C2 → S2 be any homeomorphism from
C2 onto S2. We define the landmark mismatch energy of h as: Elandmark(h) =

1/2
∑n

i=1

∫ 1

0
||h(qi(t)) − φ1(pi(t))||2dt, where the norm represents distance on the

sphere. By minimizing this energy functional, the Euclidean distance between the
corresponding landmarks on the sphere is minimized.

7. Experimental Results. In one experiment, we tested our automatic landmark
tracking algorithm on a set of 40 left hemisphere cortical surfaces extracted from
brain MRI scans, acquired from normal subjects at 1.5 T (on a GE Signa scanner).
In our experiments, 10 major sulcal landmarks (central/precentral) were automat-
ically located on cortical surfaces.

Figure 5(Top), shows how we can effectively locate the initial landmark guess
areas on the cortical surface using the Chan-Vese segmentation. Notice that the
contour evolved to the deep sulcal region. In Figure 5(Bottom), we locate the
umbilic points in each sulcal region, which are chosen as the anchor points.

Our variational method to locate landmark curves is illustrated in Figure 2. With
the initial guess given by the Chan-Vese model (we choose the two extreme points
in the located area as the anchor points), we trace the landmark curves iteratively
based on the principal direction field. In Figure 2 (left), we trace the landmark
curves on the parameter domain along the edges whose directions are closest to the
principal direction field. The corresponding landmark curves on the cortical surface
is shown. Figure 2 (left) shows how the curve evolves to a deeper sulcal region with
our iterative scheme. In Figure 2 (right), ten sulcal landmarks are located using
our algorithm. Our algorithm is quite efficient with the good initial guess using the
CV-model. (See Fig 3 Top)

To compare our automatic landmark tracking results with the manually labeled
landmarks, we measured the Euclidean distance Edifference (on the parameter do-
main) between the automatically and manually labeled landmark curves. Figure

3(Bottom) shows the value of the Euclidean distanceEdifference =
∫ 1

0
||−→c principal(t)−−→c manual(t)||2dt between the automatically and manually labeled landmark curves

at different iterations for different landmark curves. The two landmark curves
are unit-speed parametrized, denoted by −→c principal(t) and −→c manual(t) respectively.
The manually-labeled sulcal landmarks are manually labeled directly on the brain
surface by neuroscientists. Note that the value becomes smaller as the iterations
proceed. This means that the automatically labeled landmark curves more closely
resemble those defined manually as the iterations continues.

Figure 4 illustrates the application of our automatic landmark tracking algo-
rithm. We illustrated our idea of the optimization of conformal mapping using the
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Figure 3. Top : The value of Eprincipal at each iteration is shown.
Energy reached its steady state with 30 iterations, meaning that
our algorithm is efficient using the CV model as the initializa-
tion. Bottom : Numerical comparison between automatic labeled
landmarks and manually labeled landmarks by computing the Eu-
clidean distance Edifference (on the parameter domain) between
the automatically and manually labeled landmark curves, which are
unit-speed parametrized. These manually-labeled sulcal landmarks
are manually labeled directly on the brain surface by neuroscien-
tists.
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Figure 4. Optimization of brain conformal mapping using au-
tomatic landmark tracking. In (A) and (B), two different cortical
surfaces are mapped conformally to the sphere. The corresponding
landmark curves are aligned inconsistently on the spherical param-
eter domain. In (C), we map the same cortical surface of (B) to the
sphere using our algorithm. Note that the alignment of the land-
mark curves is much more consistent with the those in (A). (D),
(E), (F) shows the average surface (for N=15 subjects) based on
the optimized conformal re-parametrization using the variational
approach. Except in (F), where no landmarks were defined auto-
matically, the major sulcal landmarks are remarkably well defined,
even in this multi-subject average.

automatically traced landmark curves. Figure 4 (A) and (B) show two different
cortical surfaces being mapped conformally to the sphere. Notice that the align-
ment of the sulci landmark curves are not consistent. In Figure 4 (C), the same
cortical surface in (B) is mapped to the sphere using our method. Notice that the
landmark curves closely resemble to those in (A), meaning that the alignment of
the landmark curves is more consistent with our algorithm.

To visualize how well our algorithm can improve the alignment of the important
sulcal landmarks is, we took average surface of the 15 cortical surfaces by using
the optimized conformal parametrization algorithm [16]. Figure 4(D), (E) and (F)
shows the average surface (for N=15 subjects) based on the optimized conformal
re-parametrization using the variational approach. Except in (F), where no land-
marks were defined automatically, the major sulcal landmarks are remarkably well
defined, even in this multi-subject average. As sown in (D) and (E), sulcal land-
marks are clearly preserved inside the green circle where landmarks were defined
automatically. In (F), the sulcal landmarks are averaged out inside the green circle
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Figure 5. Top :Sulcal curve extraction on the cortical sur-
face by Chan-Vese segmentation. We consider the intensity term
as being defined by the mean curvature. Sulcal locations can
then be circumscribed by first extracting out the high curvature
regions.Bottom : Umbilic points are located on each sulci region,
which are chosen as the end points of the landmark curves.

where no landmarks were defined. This suggests that our algorithm can help by
improving the alignment of major anatomical features in the cortex. Further vali-
dation work, of course, would be necessary to assess whether this results in greater
detection sensitivity in computational anatomy studies of the cortex, but the greater
reinforcement of features suggests that landmark alignment error is substantially
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reduced, and this is one major factor influencing signal detection in multi-subject
cortical studies.

8. Conclusion and Future Work. In this paper, we propose a variational method
to automatically trace landmark curves on cortical surfaces, based on the principal
directions. To accelerate the iterative scheme, we initialize the curves by extracting
high curvature regions using Chan-Vese segmentation. This involves solving a PDE
on the cortical manifold. The landmark curves detected by our algorithm closely re-
sembled those labeled manually. Finally, we use the automatically labeled landmark
curves to create an optimized brain conformal mapping, which matches important
anatomical features across subjects. Surface averages from multiple subjects show
that our computed maps can consistently align key anatomic landmarks. In the
future, we will perform more quantitative analysis of our algorithm’s performance
and quantifying improved registration, across multiple subjects, on a regional basis.
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APPENDIX

A. The energy Eprincipal is Decreasing.
dEprincipal

ds
|s=0(

−→γ + s−→u )

=
∫ 1

0
d
ds
|s=0|

−→γ ′+s−→u ′

|−→γ ′+s−→u ′| −
−→
G(−→γ + s−→u )|2dt

=
∫ 1

0
(
−→γ ′

|−→γ ′
−−→
G(−→γ )) · [ −→u ′

|−→γ ′| −
−→γ ′(−→γ ′·−→u ′)

|−→γ ′|3 −−→
G ′(−→γ ) · −→u ]dt

=
∫ 1

0
(
−→γ ′

|−→γ ′
−−→
G(−→γ )) · [ −→u ′

|−→γ ′| −
−→γ ′(−→γ ′·−→u ′)

|−→γ ′|3 −−→
G ′(−→γ ) · −→u ]dt

= −
∫ 1

0 Σ3
i=1{[Ki

−→
L i]

′ +Ki∇Gi} · −→u < 0

if we let −→u = Σ3
i=1{[Ki

−→
L i]

′ +Ki∇Gi}.
(Here, Gi,Ki, Li are defined as in Section 4.3)
Thus, the energy Eprincipal is decreasing.
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