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Abstract
Anatomical features on cortical surfaces are usually

represented by landmark curves, called sulci/gyri curves.
These landmark curves are important information for neu-
roscientists to study brain diseases and to match differ-
ent cortical surfaces. Manual labelling of these landmark
curves is time-consuming, especially when there is a large
set of data. In this paper, we proposed to trace the land-
mark curves on cortical surfaces automatically based on the
principal directions. Suppose we are given the global con-
formal parametrization of a cortical surface, By fixing two
endpoints, the anchor points, we propose to trace the land-
mark curves iteratively on the spherical/rectangular param-
eter domain along the principal direction. Consequently,
the landmark curves can be mapped onto the cortical sur-
face. To speed up the iterative scheme, a good initial guess
of the landmark curve is necessary. We proposed a method
to get a good initialization by extracting the high curvature
region on the cortical surface using the Chan-Vese segmen-
tation. This involves solving a PDE on the manifold using
our global conformal parametrization technique. Experi-
mental results show that the landmark curves detected by
our algorithm closely resemble to those manually labelled
curves. As an application, we used these automatically la-
belled landmark curves to build average cortical surfaces
with an optimized brain conformal mapping method. Ex-
perimental results show our method can help automatically
matching brain cortical surfaces.

1 Introduction
Finding feature points or curves on anatomical surfaces

is an important problem in medical imaging. For exam-
ple, anatomical features on the cortical surface can be repre-
sented by landmark curves, called sulci/gyri curves. These
sulci/gyri curves are important information for neuroscien-
tists to study brain diseases and to match different corti-
cal surfaces. It is extremely time-consuming to label these

landmark curves manually, especially when there is a large
set of data. Therefore, an automatic or semi-automatic way
to detect these feature curves is necessary. In this paper,
we proposed to trace the landmark curves on the cortical
surfaces automatically based on the principal directions.
Suppose we are given the global conformal parametriza-
tion of a cortical surface, by fixing two endpoints, so-called
the anchor points, we propose to trace the landmark curve
iteratively on the spherical/rectangular parameter domain
along one of the two principal directions. Consequently,
the landmark curves can be mapped onto the cortical sur-
face. To speed up the iterative scheme, a good initial guess
of the landmark curve is necessary. Therefore, we pro-
posed a method to get a good initialization by extracting
the high curvature region on the cortical surface using the
Chan-Vese segmentation [14]. This involves solving a PDE
(Euler-Lagrange equation) on the manifold using the global
conformal parametrization. As an application, we used
these automatic labelled landmark curves to get an opti-
mized brain conformal mapping, which can match impor-
tant anatomical feautures across subjects.

Our paper is organized as follows: some previous works
on the related topic will be studied in section 2. The basic
mathematical theory will be discussed in section 3. In sec-
tion 4, the algorithm of automatic landmark tracking and its
application to the optimization of brain conformal mapping
will be discussed. The experimental result will be studied
in section 5. Finally, the conclusion and future works will
be discussed in section 6.

2 Previous work
Automatic detection of sulci landmark on the brain has

been widely studied by different research groups. Prince
et al. [12] has proposed a method for automated segmen-
tation of major cortical sulci on the outer brain boundary.
It was based on a statistical shape model, which includes
a network of deformable curves on the unit sphere, seeks
geometric features such as high curvature regions, and la-



bels such features via a deformation process that is con-
fined within a spherical map of the outer brain boundary.
Lohmann et al. [8] has proposed an algorithm that can au-
tomatically detect and attribute neuroanatomical names to
the cortical folds using image analysis methods applied to
magnetic resonance data of human brains. The sulci basins
are segmented using a region growing approach. Zeng et
al. [16] has proposed a method to automatic intrasulcal rib-
bon finding, by using the cortex segmentation with coupled
surfaces via a level set method, where the outer cortical sur-
face is embedded as the zero level set of a high-dimensional
distance function. By using the distance function, they for-
mulated the sulcal ribbon finding problem as one of surface
deformations.

Optimization of surface diffeomorphisms by landmark
matching has been studied intensively. Gu et al. [5] pro-
posed to optimize the conformal parametrization by com-
posing an optimal Möbius transformation so that it mini-
mizes the landmark mismatch energy. The resulting param-
eterization remains conformal. Joan et al. [4] proposed to
generate large deformation diffeomorphisms of the sphere
onto itself, given the displacements of a finite set of tem-
plate landmarks. The diffeomorphism obtained can match
the geometric features significantly but it is, in general, not
a conformal mapping. Leow et al. [7] proposed a level
set based approach for matching different types of features,
including points and 2D or 3D curves represented as im-
plicit functions. Cortical surfaces were flattened to the unit
square. Nine sulcal curves were chosen and were repre-
sented by the intersection of two level set functions, and
used to constrain the warp of one cortical surface onto an-
other. The resulting transformation was interpolated using
a large deformation momentum formulation in the cortical
parameter space, generalizing an elastic approach for corti-
cal matching developed in Thompson et al. [13].

3 Basic mathematical theory
In this section, we will briefly review some basic mathe-

matical theories.
Firstly, a diffeomorphism f : M → N is a conformal

mapping if it preserves the first fundamental form up to a
scaling factor (the conformal factor). Mathematically, this
means that ds2

M = λf∗(ds2
N ), where ds2

M and ds2
N are the

first fundamental form on M and N , respectively and λ is
the conformal factor [11].

Next, we will give a brief overview of curvatures on a
Riemann surface. The normal curvature κn of a Riemann
surface in some direction is the reciprocal of the radius of
the circle that best approximates a normal slice of surface
in that direction, which varies with different directions. It
follows:

κn = vT IIv = vT

„
e f
f g

«
v

for any tangent vector v. II is called the Weingarten ma-

Figure 1. LEFT : Conformal parametrization of the cor-
tical surface onto the 2D rectangle. RIGHT : A single
face (triangle) of the triangulated mesh.

trix and is symmetric. Its eigenvalues and eigenvectors are
called principal curvatures and principal directions respec-
tively. The sum of the eigenvalues is called the mean curva-
ture. The product of the eigenvalues is called the Gaussian
curvature. The point on the Riemann surface at which the
Weingarten matrix has the same eigenvalues is called the
umbilic point [1].

4 Algorithm

In this section, the algorithm of the automatic landmark
tracking and its application to the optimization of brain con-
formal mapping will be discussed.

4.1 Computation of conformal parameter-
ization

A diffeomorphism f : M → N is a conformal mapping
if it preserves the first fundamental form up to a scaling fac-
tor (the conformal factor). Mathematically, this means that
ds2

M = λf∗(ds2
N ), where ds2

M and ds2
N are the first funda-

mental form on M and N respectively and λ is the confor-
mal factor [11]. For a diffeomorphism between two genus
zero surfaces, a map is conformal if and only if it minimizes
the harmonic energy,Eharmonic [5]. However, this is not
true for surfaces with genus equal to one or higher.

For high genus surfaces, Gu et. al [6] has proposed an
efficient approach to parameterize surfaces conformally to
the 2D rectangles. This approach is based on the homology
group theory, the cohomology group theory and the Hodge
theory.

We can then compute a conformal parametrization from
the cortical surface onto the 2D domain. (See Figure 1(A))
[15]



Figure 2. TOP :Extraction of deep sulci region on the
cortical surface by CV segmentation. BOTTOM : After
extracting the deep sulci region, we can then locate the um-
bilic points in each sulcal region, which are chosen as the
anchor points

4.2 Computation of principal direction
with global conformal parametriza-
tion

Denote the cortical surface by C. Let φ : D → C be the
global conformal parametrization of C where D is the rect-
angular parameter domain. Let λ be the conformal factor
of φ. Following Rusinkiewicz’s work [10], we can com-
pute the principal directions, which are represented on the
parameter domain D. This is based on the following three
steps:
Step1 : Per− Face Curvature Computation

The Weingarten matrix is defined in terms of the direc-
tional derivatives of the normal vector n:

II = (Dun, Dvn) =

„
∂n
∂u · u ∂n

∂v · u
∂n
∂u · v ∂n

∂v · v
«

where u =

„ 1√
λ
0

«
and v =

„
0
1√
λ

«
are the directions of an

orthonormal coodinate system (represented on the parame-
ter domain D) in the tangent plane.

Simple checking gives: IIs = Dsn , which is the derivative
of the normal in the direction s and it is a vector on the tan-
gent plane. Given a triangulation of the Riemann surface,
we can approximate the Weingarten matrix II for each face
(triangle).

For a triangle with three well defined directions (edges)
together with the differences in normals in those directions
(Refer to Figure 1 (B)). We have:

II
„

e0 · u
e0 · v

«
=

„
(n2 − n1) · u
(n2 − n1) · v

«
; II
„

e1 · u
e1 · v

«
=

„
(n0 − n2) · u
(n0 − n2) · v

«

II
„

e2 · u
e2 · v

«
=

„
(n1 − n0) · u
(n1 − n0) · v

«

This gives a set of linear constraints on the elements of
the Weingarten matrix, which can be determined using the
least square method.
Step2 : Coordinate system Transformation

After we have computed the Weingarten matrix on each
face in the (uf , vf ) coordinate system, we can average it
with contribution from adjacent triangles. Suppose that
each vertex p has its own orthonormal coordinate system
(up, vp). We have to transform the Weingarten matrix ten-
sor into the vertex coordinates frame. The first component
of II, expressed in the (up, vp) coordinate system, can be
found as:

ep = u
T
p IIup = (1, 0)

„
ep fp

fp gp

«
(1, 0)

T

Thus,

ep = (up · uf , up · vf )II(up · uf , up · vf )
T

We can find fp and gp similarly.
Step3 : Weighting

Another question is how much weighting do we need.
That is, how much of the face curvature should be accumu-
lated at each vertex. For each face f which is adjacent to
the vertex p, we take the weighting wf,p to be the area of f
divided by the squares of the lengths of the two edges that
touch the vertex p.

4.3 Variational method for landmark
tracking

Given the principal direction field
−→
V (t) with smaller

eigenvalues on the cortical surface C. Fixing two anchor
points (a & b) on the sulci, we propose a variational method
to trace the sulci landmark curve iteratively. Let φ : D → C
be the conformal parametrization of C, < ·, · > to be its
Riemannian metric and λ to be its conformal factor. We
propose to locate a curve −→c : [0, 1] → C with endpoints a
and b, which minimizes the following energy functional:

Eprincipal(
−→c ) =

Z 1

0
|

−→c ′p
< −→c ′,−→c ′ >M

−−→V ◦ −→c |2M dt

=

Z 1

0
λ|

−→γ ′p
λ < −→γ ′,−→γ ′ >

−−→V ◦ −→γ |2dt =

Z 1

0
|
−→γ ′
|−→γ ′| −

√
λ
−→
V ◦ −→γ |2dt

=

Z 1

0
|
−→γ ′
|−→γ ′| −

−→
G(−→γ )|2dt

where −→γ = −→c ◦ φ−1 : [0, 1] → D is the correspond-
ing iterative curve on the parameter domain;

−→
G(−→γ ) =√

λ(−→γ )
−→
V (−→γ ); | · |2M =< ·, · >M and | · | is the (usual)

length defined on D. By minimizing the energy E, we min-
imize the difference between the tangent vector field along



the curve and the principal direction field
−→
V . The resulting

minimizing curve is the curve that is closest to the curve
traced along the principal direction.

Let: −→G = (G1, G2, G3);
−→
K = (K1, K2, K3) =

−→γ ′
|−→γ ′| −

−→
G(−→γ )

−→
L 1 =

(1,0,0)
|−→γ ′| −

γ′1
−→γ

|−→γ ′|3 ;
−→
L 2 =

(0,1,0)
|−→γ ′| −

γ′2
−→γ

|−→γ ′|3 ;
−→
L 3 =

(0,0,1)
|−→γ ′| −

γ′3
−→γ

|−→γ ′|3
Based on the Euler-Lagrange equation, we can locate the

landmark curve iteratively using the steepest descent algo-
rithm: d−→γ

dt = Σ3
i=1[Ki

−→
L i]

′ + Ki∇Gi (See Appendix)

4.4 Landmark hypothesis by Chan-Vese
Segmentation

In order to speed up the iterative scheme, a good initial
guess of the landmark curve is necessary. Therefore, we
proposed to get a good initialization by extracting the high
curvature region on the cortical surface using the Chan-Vese
(CV) segmentation [14]. We can extend the CV segmenta-
tion on R2 to any arbitrary Riemann surface M such as the
cortical surface.

Let φ : R2 → M be the conformal parametrization of
the surface M .

We propose to minimize the following energy functional:

F (c1, c2, ψ) =

Z

M

(u0 − c1)
2
H(ψ)dS +

Z

M

(u0 − c2)
2
(1−H(ψ))dS

+ ν length of ψ
−1

({0})

=

Z

M

(u0 − c1)
2
H(ψ)dS +

Z

M

(u0 − c2)
2
(1−H(ψ))dS

+ ν

Z

M

|∇M H(ψ)|M dS,

where ψ : M → R is the level set function and | · |M =√
< ·, · >.
With the conformal parametrization, we have:

F (c1, c2, ψ) =

Z

R2
λ(u0 ◦ φ− c1)

2
H(ψ ◦ φ)dxdy

+

Z

R2
λ(u0 ◦ φ− c2)

2
(1−H(ψ ◦ φ))dxdy + ν

Z

R2

√
λ|∇H(ψ ◦ φ)|dxdy

For simplicity, we let ζ = ψ ◦φ and w0 = u0 ◦φ. Fixing
ζ, we must have:

c1(t) =

R
Ω w0H(ζ(t, x, y))λdxdyR

Ω H(ζ(t, x, y))λdxdy

c2(t) =

R
Ω w0(1−H(ζ(t, x, y))λdxdyR
Ω(1−H(ζ(t, x, y)))λdxdy

Fixing c1, c2, the Euler-Lagrange equation becomes:

∂ζ

∂t
= λδ(ζ)[ ν

1

λ
5 ·(

√
λ
∇ζ

||∇ζ|| )− (w0 − c1)
2

+ (w0 − c2)
2
]

Now, the sulci position on the cortical surface has rela-
tively high curvature. Using CV segmentation, we can con-
sider the intensity as the mean curvature. The sulci position
on the cortical surface can then be located by extracting out

the high curvature region. Fixing two anchor points inside
the extracted region, we can get a good initialization of the
landmark curve by looking for a shortest path inside the re-
gion that joins the two points. Also, we can consider the
umbilic points inside the region as anchor points. By def-
inition, the umbilic point on a manifold is the position at
which the two principal curvatures are the same. Therefore,
we can fix the anchor points inside the region by extracting
region with small principal curvatures difference.

5 Optimization of brain conformal
parametrization

One way to analyze and compare brain data from mul-
tiple subjects is to map them into a canonical space while
retaining the original geometric information as far as pos-
sible. Surface-based approaches often map cortical surface
data to a parameter domain such as a sphere, providing a
common coordinate system for data integration [2, 3]. Any
genus zero Riemann surfaces can be mapped conformally
to a sphere, without angular distortion [5]. Therefore, con-
formal mapping offers a convenient way to parameterize
the genus zero cortical surfaces of the brain. To compare
cortical surfaces more effectively, it is desirable to adjust
the conformal parameterizations to match specific anatomi-
cal features on the cortical surfaces as far as possible (such
as sulcal/gyral landmarks in the form of landmark points
or 3D curves lying in the surface). As an application of
our automatic landmark tracking algorithm, we proposed to
use the automatic labelled landmark curves to get an opti-
mized brain conformal mapping. This matching of corti-
cal patterns improves the alignment of data across subjects,
e.g., when integrating functional imaging data across sub-
jects, measuring brain changes, or making statistical com-
parisons in cortical anatomy. This is done by minimizing
the compound energy functional Enew = Eharmonic +
λElandmark, where Eharmonic is the harmonic energy of
the parameterization and Elandmark is the landmark mis-
match energy.

Suppose C1 and C2 are two cortical surfaces we want to
compare. We let f1 : C1 → S2 be the conformal parame-
terization of C1 mapping it onto S2. Let {pi : [0, 1] → S2}
and {qi : [0, 1] → S2} be the automatic labelled land-
mark curves, represented on the parameter domain S2 with
unit speed parametrization, for C1 and C2 respectively. Let
h : C2 → S2 be any homeomorphism from C2 onto
S2. We define the landmark mismatch energy of h as,
Elandmark(h) = 1/2

∑n
i=1

∫ 1

0
||h(qi(t)) − f1(pi(t))||2dt.

where the norm represents distance on the sphere. By min-
imizing this energy functional, the Euclidean distance be-
tween the corresponding landmarks on the sphere is mini-
mized [9].



Figure 3. The figure shows the energy value Eprincipal at each iter-
ation.

Figure 4. Automatic landmark tracking using a variational approach.
In (A), we trace the landmark curves on the parameter domain along the
edges whose directions are closest to the principal direction field. The corre-
sponding landmark curves on the cortical surface is also shown. This gives a
good initialization for our variational method to locate landmarks. (B) show
how the initial landmark curve is evolved to a deeper sulci region with our
iteration scheme. Note that the curve is evolved to a deeper region. In (C),
10 major sulci landmark curves are automatically traced with our algorithm.

Figure 5. Numerical comparison between automatic labelled land-
marks and manually labelled landmarks by computing the Euclidean dis-
tance Edifference (on the parameter domain) between the automatically
and manually labelled landmark curves.

6 Experimental result
In our experiment, we tested our automatic landmark

tracking algorithm on a set of left hemisphere cortical sur-
faces generated from brain MRI scans, scanned at 1.5 T (on
a GE Signa scanner). In our experiments, 10 landmarks are
automatically located on cortical surfaces. (Figure 4(C))

In Figure 2, we illustrate how we can effectively locate
the initial landmark guess areas on the cortical surface us-
ing the Chan-Vese segmentation. Notice that the contour
evolved to the deep sulci region.

Our variational method to locate landmark curve is illus-
trated in Figure 4. With the initial guess given by the Chan-
Vese model (we choose two extreme points in the located
area as the anchor points, see Figure 2 (BOTTOM) ), we
trace the landmark curves iteratively based on the principal
direction field. In Figure 4 (a), we trace the landmark curves
on the parameter domain along the edges whose directions
are closest to the principal direction field. The correspond-
ing landmark curves on the cortical surface is also shown in
Figure 4 (a) (right). Figure 4 (b) show how the landmark
curve is evolved to a deeper sulci region with our iterative
scheme. Figure 3 shows the value of the energy functional
at each iteration. Note that the energy decreases as the it-
eration increases. The energy value decreases by 62.33%
after only 18 iterations. It means that our algorithm is very
efficient.

In order to compare our automatic landmark tracing re-
sults with the manually labelled landmarks, we measures
the Euclidean distance Edifference (on the parameter do-
main) between the automatically and manually labelled
landmark curves. Figure 5 shows the value of Edifference

at different iterations for different landmark curves. Note
that the value becomes smaller as the iteration increases.
It means that the automatically labelled landmark curves
closely resemble to the manually labelled landmark curves
as the iteration increases.

Figure 6 illustrates the application of our automatic land-



Figure 6. Optimization of brain conformal mapping using automatic
landmark tracking. In (A) and (B), two different cortical surfaces are mapped
conformally to the sphere. In (C), we map one of the cortical surface to
the sphere using our algorithm. (D), (E), (F) shows the average map of the
optimized conformal parametrization using the variational approach with the
automatically traced landmark curves.

mark tracking algorithm. We optimize the brain surface our
idea of the optimization of conformal mapping using the
automatically traced landmark curves. Figure 6 (a) and (b)
show two different cortical surfaces being mapped confor-
mally to the sphere. Notice that the alignment of the sulci
landmark curves are not consistent. In Figure 6 (c), the
same cortical surface in (b) is mapped to the sphere using
our method. Notice that the landmark curves closely re-
semble to those in (a), meaning that the alignment of the
landmark curves are more consistent with our algorithm.

To visualize how well the automatic landmark location
method can help the alignment of the important sulci land-
marks is, we took average of the 15 optimized maps using
the variational method [9]. Figure 6 (d,e,f) shows average
maps at different angles. In (d) and (e), sulci landmarks are
clearly preserved inside the green circle where landmarks
are manually labelled. In (f), the sulci landmarks are av-
eraged out inside the green circle where no landmarks are
automatically detected. It means that our algorithm can help
improving the alignment of the anatomical features.

7 Conclusion and future work
In this paper, we proposed to trace the landmark curves

on the cortical surfaces automatically based on the princi-
pal directions. This is based on minimizing an energy func-
tional. In order to speed up the iterative scheme, we pro-
posed a method to get a good initialization by extracting the
high curvature region on the cortical surface using the Chan-
Vese segmentation. This involves solving a PDE on the
manifold using our global conformal parametrization tech-
nique. Experimental results show that the landmark curves
detected by our algorithm closely resemble to those manu-
ally labelled curves. Finally, we used the automatically la-
belled landmark curves to get an optimized brain conformal

mapping, which can match important anatomical feautures
across subjects. Experimental results show that the map we
get can consistently align the important anatomical features.
In the future, some numerical analysis of our algorithm will
be done. A more quantitative analysis on how well our al-
gorithm is will also be examined.
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