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COMPUTATION OF CURVATURES USING CONFORMAL

PARAMETERIZATION

LOK MING LUI∗, JEFF KWAN† , YALIN WANG‡ , AND SHING-TUNG YAU§

Abstract. Curvatures on the surface are important geometric invariants and are widely used

in different area of research. Examples include feature recognition, segmentation, or shape analysis.

Therefore, it is of interest to develop an effective algorithm to approximate the curvatures accurately.

The classical methods to compute these quantities involve the estimation of the normal and some

involve the computation of the second derivatives of the 3 coordinate functions under the param-

eterization. Error is inevitably introduced because of the inaccurate approximation of the second

derivatives and the normal. In this paper, we propose several novel methods to compute curva-

tures on the surface using the conformal parameterization. With the conformal parameterization,

the conformal factor function λ can be defined on the surface. Mean curvature (H) and Gaussian

curvatures (K) can then be computed with the conformal Factor (λ). It involves computing only

the derivatives of the function λ, instead of the 3 coordinate functions and the normal. We also

introduce a technique to compute H from K and vice versa, using the parallel surface.

Key words: Mean curvature, Gaussian curvature, normal, conformal parameterization, confor-

mal factor.

1. Introduction. Curvatures are important geometric quantities on the surface

for different areas of research. They have found applications in many aspects such as

smoothing/fairing [1], remeshing [2], non-photo-realistic rendering [3] as well as feature

detection [4][5][6]. For example, many segmentation or mesh smoothing algorithms

use curvatures to act as the feature to determine region boundaries. In medical

research, curvatures are used to define the shape term for surface registration. Besides,

curvature are used to detect the anatomic features, such as sulcal landmarks in the

brain mapping research [6]. Since curvatures are the crucial components for various

applications, it is of interest to develop an effective way to compute these geometric

quantities accurately. In this work, we try to develop some effective ways to compute

the curvatures and geodesic on the surface accurately.

Computing curvatures on the surface has been studied widely by different research

groups. The most common techniques to compute these quantities all involve the es-

timation of the normal while some involve the computation of the second derivatives

of the 3 coordinates functions under the parameterization. Because of the inaccu-

rate approximation of the normal as well as the second derivatives, error is inevitably

introduced. In this paper, we describe several methods to compute curvatures on
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the surface using the conformal parameterization. With the conformal parameteri-

zation, we define the conformal factor function λ on the surface which encodes a lot

of geometric information of the surface. Mean curvature H and Gaussian curvature

K can then be computed with the conformal factor. It involves computing only the

derivatives of the function λ, instead of the 3 coordinates functions and the normal.

We also introduce a novel technique to compute H from K and vice versa, using the

parallel surface.

The organization of the paper is as follow: in section II, we briefly describe

some previous related works by different research groups. In section III, we explain

some important mathematical background. In section IV, we describe briefly how

conformal parameterization of the surface and its conformal factor can be computed.

In section V, we explain in details our algorithms to compute curvatures on the surface.

Experimental results are discussed in section VI. Finally, we summarize our work and

describe possible future works in section VII.

2. Previous Work. The computation of curvatures has been studied exten-

sively by various research groups. They have developed different methods and formu-

lae to compute curvatures in order to improve the computational speed and accuracy.

Surfaces are usually represented by triangle mesh. Generally speaking, curvature es-

timation techniques for triangle meshes can be divided into two categories, namely,

discrete method and continuous method. In discrete methods, curvatures are approx-

imated by formulating the closed forms for discrete differential operators that work

directly on the triangle mesh. In continuous methods, curvatures are usually com-

puted by interrogating the fitted smooth surface by polynomial fitting. This involves

fitting a smooth surface (usually 2nd or 3rd order) locally to the vertex and some

neighborhood around it. The most commonly used curvature estimation techniques

can be listed as follow:

• Discrete curvatures estimation: Meyer et al. [7] proposed a set of dis-

crete differential geometry operators to approximate important geometric at-

tributes, such as normal and curvatures, on arbitrary triangle meshes. This is

done by using averaging Voronoi cells and mixed finite-element/finite-volume

method. Another commonly cited method is to approximate the discrete

Gaussian curvature at each vertex, by computing the angles subtended at the

vertex by each triangle in the 1-ring neighborhood and its area [8].

• Eigenvalues/Eigenvectors method: Taubin [9] proposed a method to

compute the principal curvatures and principal directions at each vertex of

a triangle mesh, by computing the eigenvalues and eigenvector of a 3 × 3

symmetric matrix. Surazhsky [10] later on proposed algorithms to improve

Taubin’s method. For the computation of the normal at each vertex, he

suggested to replace the weighted average of the incident triangles by the
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weighted incident angles. He also suggested to replace the the directional

curvature by average of curvatures at the two vertices of an edge, which sig-

nificantly smoothes the large variations in directional curvatures.

• High order surface fitting method: Hamann [11] proposed to fit a quad-

ric approximated locally to a neighborhood of vertices. Curvatures are cal-

culated by interrogating the quadric. Yokoya et al. [12] proposed to use a

local quadratic function to fit the surface for segmentating the point cloud

(range data) image, using a (2m + 1)× (2m + 1) window around the pixel of

interest. The solution is obtained from standard least square fit. Goldfeather

et al. [13] proposed a cubic order approximation method by adding normal

vectors at adjacent vertices to create third degree term in the least-squares

solution which results in a better fitting surface.

• Normal based estimation: Theisel et al. [14] proposed a normal based

technique to estimate the curvature tensor on the triangle mesh. The algo-

rithm estimates the curvature tensor for a single triangle equipped with an

estimated or exact surface normals. The result is a continuous function for

the curvature tensor inside each triangle.

• Tensor averaging method: Rusinkiewicz et al. [15] proposed to estimate

the curvature per face by computing the directional derivative of the surface

normal, which is obtained by differences between normal vectors on the face.

The vertex curvature is obtained by taking a weighted average of the adjacent

tensor faces’ normal vectors.

3. Mathematical Theory. In this section, we are going to give a brief review

of some important mathematical background related to our algorithm.

We start by briefly describing the concept of curvatures on a surface. Given a

surface S, the normal curvature κn in some direction is the reciprocal of the radius of

the circle that best approximate a normal slice of the surface in that direction. For

smooth surface, it can be computed from a 2 × 2 symmetric matrix W, called the

Weingarten matrix, by:

(1) κn = (u, v)W

(
u

v

)
= (u, v)

(
e f

f g

)(
u

v

)

for any unit length vector (u, v) in the tangent plane of the surface.

The principal curvatures, principal directions, mean curvatures and gaussian cur-

vatures can be defined by the eigenvalues and eigenvectors of W. Let k1, k2 be the

eigenvalues of W and ~d1, ~d2 be the eigenvectors of W. Then, k1 and k2 are called

the principal curvatures; ~d1 and ~d2 are called the principal directions. The mean

curvature H is defined as the average of the principal curvatures: H = k1+k2

2 . The

Gaussian curvature K is defined as the product of the principal curvatures: H = k1k2
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Lastly, we are going to describe the concept of conformal parameteriation of a

Riemann surface. All Riemann surfaces are locally Euclidean. Given two Riemann

surfaces M and N . We can represent them locally as φM (x1, x2) : R2 → M ⊆ R3 and

φN (x1, x2) : R2 → N ⊆ R3 respectively, where (x1, x2) are their coordinates. The

inner product of the tangent vectors at each point of the surface can be represented

by its first fundamental form. The first fundamental form on M can be written

as ds2
M =

∑
i,j gijdxidxj , where gij = ∂φM

∂xi · ∂φM

∂xj and i, j = 1, 2. Similarly, the first

fundamental form on N can be written as ds2
N =

∑
i,j g̃ijdxidxj where g̃ij = ∂φN

∂xi · ∂φN

∂xj

and i, j = 1, 2. Given a map f : M → N between the M and N . With the local

parameterization, f can be represented locally by its coordinates as f : R2 → R2,

f(x1, x2) = (f1(x1, x2), f2(x1, x2)). Every tangent vectors ~v on M can be mapped

(push forward) by f to a tangent vectors f∗(~v) on N . The inner product of the

vectors f∗(~v1) and f∗(~v2)), where ~v1 and ~v2 are tangent vectors on M , is:

f∗(ds2
N )(v1, v2) := < f∗(v1), f∗(v2) >

=
∑

i,j

g̃ijf∗(vi) · f∗(vj)

=
∑

i,j

(
∑

m,n

g̃mn

∂fi

∂xm

∂fj

∂xn
)vivj)

(2)

Therefore, a new Riemannian metric f∗(ds2
N ) on M is induced by f and ds2

N ,

called the pull back metric. We say that the map f is conformal if

f∗(ds2
N ) = λ(x1, x2)ds2

M

A parameterization ϕ : R2 → M is a conformal parameterization if ϕ is a

conformal map.

Intuitively, a map is conformal if it preserves the inner product of the tangent vec-

tors up to a scaling factor, called the conformal factor λ. An immediate consequence

is that every conformal map preserves angles.

4. The conformal parameterization of the surface and its conformal

factor. One crucial component in our algorithm is to get a conformal parameteriza-

tion of the surface. In this paper, we apply the algorithm proposed by Gu et al. [16],

[17],[18] to parameterize the surface to 2D rectangles by computing its holomorphic

one form. It is done by computing the surface’s homology basis, De-Rham cohomol-

ogy basis, harmonic one form and its hodge-star conjugates. We are going to describe

briefly the basic idea of this algorithm in this section.

To parameterize a compact surface onto 2D rectangles, one intuitive technique is

to cut it open along some suitable cutting boundaries. If the cut is suitably chosen, the

parameterization could be conformal. In the algorithm that we use to parameterize

the surface, we search for the suitable cutting boundaries on the surface in order to
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Fig. 1. The plot of the conformal factor λ of a human face verses u and v of the parameter

domain. The conformal factor is a smooth function which describe the stretching effect under the

conformal parameterization. Observe that the approximation of the conformal factor function is

reasonably smooth.

get a conformal map. This is done by computing the holomorphic one form on the

surface and obtain the conformal map by integrating the holomorphic one form.

The holomorphic one form ω is a complex differential form. To compute the

holomorphic 1-form, we start by computing the harmonic 1-form ω on the surface.

Similar to complex analysis, we can compute a harmonic conjugate ∗ω of ω, such

that W := ω + i ∗ ω is a holomorphic (analytic) 1-form. The harmonic one form

can be computed from the homology basis of the surface. Given a homology basis

{e1, ..., e2g} on the surface, we can compute a set (basis) of the harmonic 1-forms

{ω1, ..., ω2g} (cohomology) by solving the following system:





dω =
∑3

i=1 ω([uj−1, uj ]) = 0, ∀[u0, u1, u2] ∈ M, u0 = u3 (closedness);

△ω =
∑

[u,v]∈M ω([u, v]) = 0∀[u, v] ∈ M (harmonicity);
∫

ei
ω =

∑ni

i=1 ω([ui
j−1, u

i
j ]) = δij∀ei =

∑ni

j=1[u
i
j−1, u

i
j ], u

i
0 = ui

ni
(conjugacy).

where [u0, u1, u2] represents a face on M ; [u, v] represents an edge on M ; kuv =
1
2 (cotα + cotβ) in which α, β are the angles against the edge [u, v].

After we get the holomorphic 1-form, we can compute the conformal parameteri-

zation φ by integrating the one form: φ(p) =
∫

γ
ω =

∫
γ

f(zα)dzα, where γ is any path

joining p to a fixed point c on the surface and ω = f(zα)dzα.

Double covering techniques are applied to surfaces with boundaries to convert

them to closed symmetric surfaces.

Further details about the algorithm can be found in [16], [17].

Given the conformal parameterization of the surface, we can obtain a confor-

mal factor function λ. By definition, the conformal parameterization has a simple

Riemannian metric, namely,

gij =

{
λ if i = j;

0 if i 6= j.
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Fig. 2. (A) shows the conformal coordinates grid on the human face introduced using the

conformal parameterization. (B) shows the histogram of g12 = g21 of a Riemann surface under the

conformal parameterization. Observe that g12 = g21 are very close to zero at most vertex. It means

the Riemannian metric is a diagonal matrix, which results in simple expression for the curvatures

computation.

In other words, the four metric coefficients are reduced to one coefficient metric λ,

called the conformal factor. With this property, surface differential operators can be

expressed within the conformal coordinates with simple formulae. The expressions are

similar to the usual Euclidean differential operators, except for a scalar multiplication

of the conformal factor. The conformal factor at a point p on the surface S can

be determined by computing the scaling factor of a small area around p under the

parameterization φ : R2 → S. Mathematically, λ(p) = Area(Bǫ(p))
Area(φ−1(Bǫ(p))) , where Bǫ(p)

is an open ball around p of radius p. Figure 1 shows the plot of conformal factor λ

verses u and v of the parameter domain. The conformal factor is a smooth function

which describe the stretching effect under the conformal parameterization. Observe

that the approximation of the conformal factor function is reasonably smooth. Figure

2 (A) shows the conformal coordinates grid on the human face introduced using the

conformal parameterization. Figure 2(B) shows the histogram of g12 of the Riemann

surface under the conformal parameterization. Note that by definition, g12 = g21 =

φu · φv, where φ(u, v) is the conformal parameterization of the surface. Observe that

g12(= g21) are very close to zero at most vertex. It means the Riemannian metric is

diagonal under the conformal parameterization.

The conformal factor λ encodes a lot of important geometric information about

the surface and can be used to compute curvatures and geodesic.

5. Algorithm. In this section, we explain in details our algorithms to compute

curvatures on the surface.
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5.1. Computation of the gaussian curvature K from the conformal fac-

tor. Let M be a Riemann surface and let φ(u, v) : R2 → M be the parameterization

of M. Denote the first fundamental form by ds2
M = Edu2 + Fdudv + Gdv2. When φ

is orthogonal, F = 0. When φ is conformal, E = F = λ, where λ is the conformal

factor. We propose to compute the gaussian curvature K with the functions E and

G when φ is orthogonal, and compute K with λ when φ is conformal. Under the

conformal parameterization, gaussian curvature can be computed easily [19]. These

can be described by the following lemma and theorems.

Lemma 1.

(3) K = −[(Γ2
12)u − (Γ2

11)v + Γ1
12Γ

2
11 + Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12]/E

Theorem 1. Suppose φ is orthogonal (F = 0). The gaussian curvature K can be

computed by:

(4) K = − 1

2
√

EG
[(

Ev√
EG

)v + (
Gu√
EG

)u]

Proof. With F = 0, Γ2
12 = Gu

2G
; Γ2

11 = −Ev

2G
; Γ1

12 = Ev

2E
; Γ1

11 = Eu

2E
; Γ2

11 = −Eu

2E
;

Γ2
22 = Eu

2E
. Putting them into equation 3, we have:

K = −[(
Gu

2G
)u + (

Ev

2G
)v − E2

v

4EG
+

G2
u

4G2
+

EvGv

4G2
− EuGu

4EG
]/E

= −[(
Guu

2G
− G2

u

2G2
) + (

Evv

2G
− EvGv

2G2
) − E2

v

4EG
+

G2
u

4G2
+

EvGv

4G2
− EuGu

4EG
]/E

= −[
Guu

2EG
+

Evv

2EG
− E2

vv

4E2G
− G2

u

4EG2
) − EvGv

4EG2
− EuGu

4E2G
]

= − 1

2
√

EG
[(

Ev√
EG

)v + (
Gu√
EG

)u]

(5)

Theorem 2. Suppose φ is conformal with E = G = λ and F = 0, where λ is the

conformal factor. The gaussian curvature K can be computed by:

(6) K = − 1

2λ
∆log λ

Proof. Suppose φ is conformal and λ = λ(u, v) is the conformal factor with respect

to φ. Put E = G = λ into equation 4, we have:

K = − 1

2
√

λ2
[(

λv√
λ2

)v + (
λu√
λ2

)u]

= − 1

2λ
[(

λv

λ
)v + (

λu

λ
)u]

= − 1

2λ
∆log λ

(7)
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When φ is a conformal parameterization of the surface S, we see that we can

compute K on S easily by equation 6. This significantly reduces the error in the

approximation compared to other classical methods. In the classical methods, the

computation of K involves the approximation of the second derivatives of the coordi-

nates functions as well as the normal. In our proposed method, we compute K using

one function λ defined on S. The computation can then be greatly simplified and the

numerical error can be significantly reduced.

Due to the computational error , the conformal parameterization we approximate

may sometimes only be orthogonal but not conformal. That is, F = 0 but E 6= G.

In this case, instead of using equation 6, we use equation 4 to compute the Gaussian

curvature K so as to get a more accurate result.

5.2. Computation of the mean curvature H from the conformal factor.

With the conformal parameterization φ = φ(u, v) of the surface, the computation of

the mean curvature H will be easier [19].

Given an arbitrary parameterization (not necessarily conformal) of the surface,

we can generally compute the mean curvature H using the following formula:

(8) H =
1

2

Eg − 2fF + Ge

EG − F 2

where: E =< φu, φu >; F =< φu, φv >; G =< φv, φv >; e =< φuu, ~N >; e =<

φuv, ~N >; g =< φvv, ~N > and ~N is the surface normal. This formula is complicated for

arbitrary parameterization and involves several partial derivatives in the formula. This

inevitably causes numerical error. However, with the conformal parameterization, the

formula can be significantly simplified.

Theorem 3. Suppose φ is conformal with E = G = λ and F = 0, where λ is the

conformal factor. The mean curvature H can be computed by:

(9) H =
1

2λ
sign(φ)|∆φ| = ± 1

2λ
|φuu + φvv|

where ~N is the (unit) surface normal, sign(φ) = <∆φ, ~N>
|∆φ| = ±1.

Proof. Suppose φ is conformal and λ = λ(u, v) is the conformal factor with respect

to φ.

We have < φu, φu >=< φv, φv >= λ and < φu, φv >= 0. By differentiation, we have:

< φuu, φu >=< φvu, φv >= − < φu, φvv >

We get: < φuu + φvv, φu >= 0. And similarly we get: < φuu + φvv, φv >= 0.

Therefore, ∆φ is parallel to ~N and sign(φ) = <∆φ, ~N>
|∆φ| = ±1.

Now,

H =
1

2

Eg − 2fF + Ge

EG − F 2
=

1

2

g + e

λ
=

1

2

< φuu + φvv, ~N >

λ
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So,

H =
1

2

< ∆φ, ~N >

λ
=

1

2

< ∆φ, ~N >

|∆φ|λ |∆φ| =
1

2λ
sign(φ)|∆φ|

The formula for computing mean curvature is significantly simplified with confor-

mal parameterization. As a result, the computational cost and numerical error can be

reduced. Suppose the surface normal can be accurately approximated, we can further

reduce the second derivative in the formula to first derivative:

(10) H =
1

2λ
sign(φ)|∆φ| = ∓ 1

2λ
< φu, ~Nu > + < φv, ~Nv >

However, in practice, the surface normal is usually inaccurately approximated.

This is one of the main problem why many curvature estimation method do not give

an accurate approximation of the mean curvature. This problem can be significantly

improved by the above formula H = 1
2λ

sign(φ)|∆φ|. As we can see, the only part

we need to use the surface normal ~N is when we compute sign(φ) = <∆φ, ~N>
|∆φ| = ±1.

Since we know the value of it is either 1 or -1, the surface normal ~N does not need

to be accurately estimated. As long as it can tell us the convexity of the surface at

a particular point on the surface, we can determine whether sign(φ) is equal to 1 or

-1. Using the formula that we described above, the curvature can be more accurately

computed, even if the surface normal ~N cannot be estimated accurately.

5.3. Computation of H from K and K from H using parallel surface.

After we have the accurate approximation of the Gaussian curvature K, we can get

the mean curvature H from K using the idea of parallel surface. Similarly, we can

get K from H using the parallel surface.

Given a parameterization φ = φ(u, v) of S, a parallel surface Sa of S is the

parameterized surface with parameterization: φa(u, v) = φ(u, v) + a ~N(u, v) where a

is a constant; ~N is the surface normal of S. Figure 3 shows the parallel surface of a

human face. The human face is firstly parameterized by a conformal parameterization

φ. The surface normal is computed by ~N = φu×φv

|φu×φv |
. Here, we set a to be equal to

0.01.

With the concept of the parallel surface, we can compute H from K and vice

versa using the following theorem.

Theorem 4. Suppose φ is the conformal parameterization of S and Sa is its

parallel surface. Let K and Ks be the Gaussian curvatures on S and Sa respectively.

Let H and Hs be the mean curvatures on S and Sa respectively.

The mean curvature H can be computed by:

(11) H =
(Ks − K) + (KKs)a

2

2aKs
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Fig. 3. The figure shows the parallel surface of a human face. The human face is firstly

parameterized by a conformal parameterization φ. The surface normal is computed by ~N = φu×φv

|φu×φv|
.

The parallel surface is shown on the right which can be computed by the formula: φa(u, v) = φ(u, v)+

a ~N(u, v) where a is a constant; ~N is the surface normal of S. Here, a is equal to 0.01.

The gaussian curvature K can be computed by:

(12) K =
(H − Hs) + 2HHsa

a + Hsa2

Proof. Let φ = φ(u, v) be the parameterization of S and φa(u, v) = φ(u, v) +

a ~N(u, v) be the parameterization of the parallel surface Sa, where ~N is the surface

normal of S.

Firstly, we will prove that: φa
u × φa

v = (1 − 2Ha + Ka2)φu × φv.

Note that:

φa
u × φa

v = (φu + a ~Nu) × (φv + a ~Nv)

= φu × φv + aφu × ~Nv + a ~Nu × φv + a2( ~Nu × ~Nv)

= φu × φv − 2Haφu × φv + a2K(φu × φv)

= (1 − 2Ha + Ka2)φu × φv

Therefore, the surface normal ~Na of Sa is the same as the surface normal ~N of S.

Now,
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~Na
u × ~Na

v = Ksφ
a
u × φa

v = Ks(1 − 2Ha + Ka2)φu × φv

= ~Nu × ~Nv = Kφu × φv

So,

Ks =
K

1 − 2Ha + Ka2

and,

H =
(Ks − K) + (KKs)a

2

2aKs

Since φ = φa − a ~N , we have:

K =
Ks

1 + 2Hsa + Ksa2

and so,

Hs =
Ks − K − KKsa

2

2Ka
=

K
1−sHa+Ka2 − K − K2a2

1−sHa+Ka2

2Ka

=
H − aK

1 − 2Ha + Ka2

we get,

K =
(H − Hs) + 2HHsa

a + Hsa2

6. Experimental Result. We tested our algorithm on the synthetic data and

the real face data. The experimental result shows that our algorithm can effectively

compute the curvatures on the surface more accurately.

To test whether our algorithm can accurately approximate the curvatures, we test

computing the curvatures using our method on synthetic data on which the exact cur-

vatures are know. In our experiment, we tested our curvature estimation method on

a catenoid on which the exact curvatures are known. Figure 4 left shows the catenoid

surface. Figure 4 middle shows the plot of mean curvature of the catenoid verses the

u and v of the parameter domain (resolution=2500). The exact mean curvature of

the catenoid is zero since it is a minimal surface. Note that the approximated values

are very close to zero. Figure 4 right shows the plot of the gaussian curvature verses

the u and v of the parameter domain. It closely resembles the exact mean curvature

of a catenoid. Note that both the approximation of the mean and gaussian curvature

are very smooth.

We also stuided how the error of the curvature estimation differs with different

resolution (number of vertices on the surface). Figure 5 shows the plot of the maxi-

mum error of the mean curvature estimation under different resolution using different
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Fig. 4. We test our curvature estimation method on a catenoid on which the exact curvatures

are known. The left shows the catenoid surface. The middle shows the plot of mean curvature

of the catenoid verses the u and v of the parameter domain (resolution=2500). The exact mean

curvature of the catenoid is zero since it is a minimal surface. Note that the approximated values

are very close to zero. The right shows the plot of the gaussian curvature verses the u and v of the

parameter domain. It closely resembles the exact mean curvature of a catenoid. Note that both the

approximation of the mean and gaussian curvature are very smooth.

method. The vertical axis represents the maximum error amongst all vertices. The

horizontal axis represents the resolution. The red curve shows the error using the

normal based curvature estimation method. The green curve shows the error using

the Weingarten matrix estimation method. The blue curve shows the error using our

proposed method, which compute the mean curvature from the conformal factor λ.

Note that the error using our proposed is the least when comparing with the other

two methods. It shows that our method can effectively compute the mean curvature

accurately.

We also tested our methods on the real human face data. We applied our algo-

rithm to compute the mean curvature of the human face using the conformal factor.

Figure 6 shows the plot of the mean curvature of a human face verses u and v of the pa-

rameter domain. The surface is firstly parameterized with a conformal parameteriza-

tion φ. The mean curvature is then computed with the formula: H = 1
2λ

sign(φ)|∆φ|.
We applied our method to compute the gaussian curvature of the human face with

the conformal factor. Figure 7 shows the approximation of the gaussian curvature on

a human face from the conformal factor. The surface is firstly parameterized with

a conformal parameterization. Conformal factor is then computed to compute the

gaussian curvature. The figure shows the plot of the gaussian curvature verses u and

v of the parameter domain.

We also tested our algorithm for computing the mean curvature from the gaussian

curvature using the parallel surface. In Figure 8, we illustrate how we can compute

the mean curvature of the human face from the gaussian curvature using the parallel

surface. The gaussian curvature on the human face is firstly computed from the con-

formal factor. The mean curvature can then be computed using the parallel surface.

Note that the approximation of the mean curvature is reasonably smooth.

7. Conclusion. In this paper, we have described several novel methods to com-

pute curvatures on the surface using the conformal parameterization. With the confor-
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Fig. 5. The plot of the maximum error of the mean curvature estimation under different reso-

lution using different method. The vertical axis represents the maximum error amongst all vertices.

The horizontal axis represents the resolution. The red curve shows the error using the normal based

curvature estimation method. The green curve shows the error using the Weingarten matrix estima-

tion method. The blue curve shows the error using our proposed method, which compute the mean

curvature from the conformal factor λ. Note that the error using our proposed method is the least

when comparing with the other two methods. It shows that our method can effectively compute the

mean curvature accurately.

mal parameterization, the conformal factor function λ can be defined on the surface.

Mean H and Gaussian K curvatures can then be computed with the conformal factor.

It involves computing only the derivatives of the function λ, instead of the 3 coordi-

nates functions and the normal. We also introduce a technique to compute H from

K and vice versa, using the parallel surface. As far as we know, we are the first group

using the conformalilty to compute the curvatures on the surface. Experimental re-

sults show that our methods can effectively and accurately compute the curvatures

on the surface. In the future, we will test our methods on more surfaces and study

numerically how the error in the approximation will be affected by the error in the

approximation of the conformal factor.
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Fig. 6. The plot of the mean curvature of a human face verses u and v of the parameter domain.

The surface is firstly parameterized with a conformal parameterization φ. The mean curvature is

then computed with the formula: H = 1
2λ

sign(φ)|∆φ|

Fig. 7. Approximation of the gaussian curvature on a human face from the conformal factor.

The surface is firstly parameterized with a conformal parameterization. Conformal factor is then

computed to compute the gaussian curvature. The figure shows the plot of the gaussian curvature

verses u and v of the parameter domain.
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Fig. 8. Illustration of computing the mean curvature of the human face from the gaussian

curvature using the parallel surface. The gaussian curvature on the human face is firstly computed

from the conformal factor. The mean curvature can then be computed using the parallel surface.

Note that the approximation of the mean curvature is reasonably smooth.
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