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Abstract
We propose a new variational method which can find 

a unique mapping between any two genus zero 
manifolds by minimizing the harmonic energy of the 
map.  We demonstrate the feasibility of our 
algorithm by applying it to the cortical surface 
matching problem.  We use a mesh structure to 
represent the brain surface.  Further constraints are 
added to ensure that the conformal map is unique.  
Empirical tests on MRI data show that the 
mappings preserve angular relationships, are 
stable in MRIs acquired at different times, and are 
robust to differences in data triangulation, and 
resolution.  Compared with other brain surface 
conformal mapping algorithms, our algorithm is 
more stable and has good extensibility.

Abstract
We propose a new We propose a new variationalvariational method which can find method which can find 

a unique mapping between any two genus zero a unique mapping between any two genus zero 
manifolds by minimizing the harmonic energy of the manifolds by minimizing the harmonic energy of the 
map.  We demonstrate the feasibility of our map.  We demonstrate the feasibility of our 
algorithm by applying it to the cortical surface algorithm by applying it to the cortical surface 
matching problem.  We use a mesh structure to matching problem.  We use a mesh structure to 
represent the brain surface.  Further constraints are represent the brain surface.  Further constraints are 
added to ensure that the conformal map is unique.  added to ensure that the conformal map is unique.  
Empirical tests on MRI data show that the Empirical tests on MRI data show that the 
mappings preserve angular relationships, are mappings preserve angular relationships, are 
stable in stable in MRIsMRIs acquired at different times, and are acquired at different times, and are 
robust to differences in data triangulation, and robust to differences in data triangulation, and 
resolution.  Compared with other brain surface resolution.  Compared with other brain surface 
conformal mapping algorithms, our algorithm is conformal mapping algorithms, our algorithm is 
more stable and has good extensibility.more stable and has good extensibility.

Conformal Mapping
Any surface without holes or self-intersections can be 
mapped conformally onto the sphere
This mapping, conformal equivalence, is one-to-one, 
onto, and angle preserving
Locally, shape is preserved and distances and areas 
are only changed by a scaling factor
A canonical space is useful for subsequent work
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Conformal Mapping Properties
Intrinsic to geometry
Independent of triangulation and resolution
Depends on metric continuously
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Genus Zero Conformal Mapping 
Properties

Harmonic is equivalent to conformal
All conformal are equivalent
All the conformal construct a automorphism group:  
Möbius group which is a linear rational group on 
complex plane and a 6 dimensional group.
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Algorithm at a Glance
Minimize Harmonic Energy
Use absolute derivative
All computation are on the target surface, without 
projecting to complex plane
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Spherical parameterization algorithm 
for genus zero surface

Use Gauss map as the initial degree one map
Compute the gradient vector of harmonic energy on 
each vertex
Project the gradient vector to the tangent space on S2

at each vertex
Update the image of each vertex along the tangential 
gradient direction
Normalize the mapping by shifting the center of the 
mass to the sphere center
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Optimize the Conformal 
Parameterization by Landmarks

We define a metric to measure the quality of the 
parameterization.  
Suppose two brain surfaces S1,S2, two conformal 
parameterizations are denoted as f1: S2→S1 and 
f2: S2→S2, the matching metric is defined as 
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Let Ω be the group of Möbius transformations. We can 
compose a Möbius transformation such that

Landmarks are commonly used in brain mapping.  
They are a set of sulcal curves manually drawn on the 
brain surfaces.
We can use landmarks to obtain such a Möbius
transformation. 
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the Conformal Parameterization by 
Landmarks (Cont.)

Landmarks are represented as discrete point sets.  We 
can reduce the brain matching metric by reducing the 
matching metric on landmark sets.
First we project the sphere onto the complex plane.  
We find a Möbius transformation on the complex 
plane which reduce the matching metric on landmark 
sets.  Then we project the results back to the sphere.
For a Möbius transformation on the complex plane u, 
since it maps infinity to infinity, it means the north 
poles of the spheres are mapped to each other.
Then u can be represented as a linear form az+b.  Let 
pi and qi, i=1 …n, are corresponding landmark points.  
The functional of u can be simplified as

where zi is the stereo-projection of pi, τi is the 
projection of qi, g is the conformal factor from the 
plane to the sphere.
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SubjectSubject Vertex #Vertex # Face #Face # BeforeBefore AfterAfter
AA 65,53865,538 131,072131,072 -- --
BB 65,53865,538 131,072131,072 604.134604.134 506.665506.665
CC 65,53865,538 131,072131,072 414.803414.803 365.325365.325

Discussion
Compared with Haker’s method [I] , our method is more 
geometric; no big distortion areas; more stable; good 
extension ability (e.g. it is possible to do brain mapping 
between two brains using our algorithm.)
Compared with Hurdal’s method [II] , our method preserves 
angles; good mapping between brains and the canonical 
space. 
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Conformal mappings of surfaces with different resolutions. The original brain surface has 50,000 faces, and is 
conformally mapped to a sphere, as shown in (a). Then the brain surface is simplified to 20,000 faces, and its 
spherical conformal mapping is shown in (b).

Conformality measurement. The curves of iso-polar angle and iso-azimuthal angle are mapped to the 
brain, and the intersection angles are measured on the brain. The histogram is illustrated.

(a) (b)

Reconstructed brain meshes and their spherical harmonic mappings. (a) and (c) are the 
reconstructed surfaces for the same brain scanned at different times. Due to scanner noise 
and inaccuracy in the reconstruction algorithm, there are visible geometric differences. (b) 
and (d) are the spherical conformal mappings of (a) and (c) respectively; the normal 
information is preserved. By the shading information, the correspondence is illustrated.

(a) (b) (c) (d)

Conformal texture mapping. The conformality is visualized by texture mapping of a checkerboard image.
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