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Abstract. High angular resolution diffusion imaging (HARDI) is a powerful 

variant of diffusion MRI, which images the 3D profile of diffusion at each im-

aged location in the brain. At each voxel, this leads to an orientation density 

function (ODF) expressing the probability density of water diffusion in each di-

rection on the unit sphere. As diffusion is greatest along the brain’s axons, these 

functions are used to map fiber trajectories (tractography) and fiber integrity. To 

average and compare this data across subjects, we developed a new method 

based on the heat kernel signature and ‘Möbius voting’ to identify and align 

peaks of diffusivity on the sphere. We compare our method to standard coordi-

nate-based averaging, and it helps to reinforce consistent features in both syn-

thetic data and real HARDI data. This scheme to compare and integrate HARDI 

data may be helpful in population-based analyses of brain integrity and connec-

tivity. 
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1 Introduction 

High angular resolution diffusion imaging (HARDI) offers several advantages for 

studying the local integrity, geometry and connectivity of white matter fibers in the 

living brain. When fibers cross or mix in the same voxel, measures based on the wide-

ly-used diffusion tensor can be biased (e.g., fractional anisotropy estimates tend to be 

too low), in the ~40% of white matter voxels where more than one dominant fiber 

direction is detectable [1, 2]. From HARDI, orientation distribution functions (ODF) 

may be defined as the radial projection of the spherical diffusion function. Despite the 

rich information in HARDI datasets – yielding an entire spherical function at each 

point in a 3D image – the statistical study of diffusion images have mainly focused on 

scalars derived from the tensor model. The vast majority of studies still examine frac-

tional anisotropy (FA) as the main target of study. [3] 

Precise voxel-level comparison of HARDI datasets cannot be performed across 

subjects without removing some of the confounding structural variability. The diffu-

sion functions can be considered as defined on the anatomy of each individual, and if 



nonlinear registration of the anatomy is used for normalization, there will be better 

agreement among the diffusion functions defined on the anatomy. Better structural 

alignment generally improves the power to detect changes related to disease, devel-

opment, and aging, and improves the accuracy of segmentation and post-processing of 

HARDI data [4].  

Thus, there has been a recent flurry of HARDI registration algorithms [5-10]. 

Some work has attempted to register fields of spherical functions, treating the spheri-

cal function as a probability density, and defining distances between them based on 

information theory, such as the Fisher-Rao metric, or symmetrized Kullback-Leibler 

distance [11]. Such metrics may be integrated over the whole brain, and their varia-

tional derivative may be computed with respect to tunable parameters of 3D vector 

fields used to register the images [12]. Chiang et al. [12] found that 3D fluid registra-

tion of diffusion images gave more accurate alignment when the tensors or ODFs 

were aligned using information theory, but the approach was limited because there 

was no attempt to define corresponding features (such as peaks of diffusivity) on the 

ODFs across subjects. Because of this, corresponding features were not reinforced in 

the ODFs across subjects, when data were averaged and compared. 

In the standard, single-tensor, DTI model, the fitted diffusion tensor has only one 

dominant direction (its principal eigenvector), so registration is straightforward as it 

only involves aligning one direction to the other (although clearly there may be am-

biguous or difficult cases if the principal eigenvector is not unique or if the 2 or 3 

highest eigenvalues are close in magnitude). By contrast, the ODF model can often 

have multiple dominant directions. This leads to difficulties in peak matching, unless 

an explicit effort is made to match them. In this study, we propose a new ODF regis-

tration method, designed to reinforce common features in populations of diffusion 

images. As the ODF is defined on the unit sphere, we first use the heat kernel signa-

ture (HKS) to detect the peaks in the spherically-parameterized functional domain. 

We then use stereographic projection to map the 3D spherical surface to the 2D com-

plex plane, and match the HKS peaks in complex plane using Möbius transformation. 

We then use the inverse stereographic projection to pull-back the mapping to the 3D 

space. Using this method, ODF multiple peaks may be matched very quickly, giving 

robust results in line with intuition. 

2 Method description 

2.1 ODF Computation using the Tensor Distribution Function 

We adopted the Tensor Distribution Function (TDF) theory [13, 14] to calculate 

the ODF. The space of symmetric positive definite 3x3 matrices was denoted by  ̅. 

The probabilistic ensemble of tensors, represented by a tensor distribution function 

(TDF) P, is defined on the tensor space  ̅ that best explains the observed diffusion-

weighted signals. We used the least-squares approach with the gradient descent de-

fined in [13] to solve for an optimal TDF P
*
. From the TDF P

*
, the ODF may be 

computed analytically [15]. All ODFs were rendered using 642 point samples, deter-

mined using an icosahedral approximation of the unit sphere. The TDF-based ODF 



calculation can be expressed in Equation 1 (Please refer to [13] for explanation in 

details). In addition, 1280 faces were determined using Delaunay triangulation. Every 

local maximum of the 3D surface may be one of the possible dominant directions. To 

find the local maxima, we adapted Heat Kernel Signature theory. 
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2.2 Peak detection using the Heat Kernel Signature  

The Heat Kernel Signature (HKS) was first proposed by [16]. Let M be a compact 

Riemannian manifold, possibly with a boundary. The heat diffusion process over M is 

governed by the heat equation: 
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Here    is the Laplace-Beltrami operator of M. If M has boundaries, the Dirichlet 

boundary condition µ(x,t)=0 for all      and all t. Given an initial heat distribu-

tion      , let   ( ) denote the heat distribution at time t, namely   ( ) satisfies 

the heat equation for all t, and         ( )   . Ht is called the heat operator. It is 

well known [17] that for any M, there exists a function   (   )  
      

   such that 
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Where dy is the volume form at    . The minimum function   (   ) that satis-

fies Eq. (3) is called the heat kernel. Then, given a point x on the manifold M, the 

Heat Kernel Signature, HKS(x) is defined as a function over the temporal domain: 

   ( )          (   )    (   )                              (4) 

The HKS has a very nice property: the surface HKS function of a point x is directly 

related to the Gaussian curvature on a surface at x [16], which is an intrinsic geomet-

ric property of the shape. This method offers the advantages of inelastic deformation 

invariance and is somewhat robust to topological noise. So it offers a reliable way for 

us to compute surface Gaussian curvature related statistics, e.g., for peak detection 

(Figure 1). HKS was computed using 1-100 (in unit increments) as the artificial time 

and then normalized by the maximum value. We chose the HKS values at t=1 as the 

HKS values for each ODF. Here, the local maxima of the ODFs were selected, based 

on the amplitude of the HKS value at each point in the spherical surface. For each 

ODF, we pick n points - let us assume pi from ODF1 and qi from ODF2 and i=1, 2, 

…, n. Fig. 1 shows a few computed HKS examples on various ODFs. Once we define 

local maxima (p and q) for the ODFs, the next step is to find a diffeomorphism to 

match the ODFs. To match multiple peaks at the same time, we use Möbius transfor-

mation theory, as every Möbius transformation is a bijective conformal map of the 

Riemann sphere to itself. 



 

Fig. 1. Heat Kernel Signature for several typical kinds of orientation density functions (ODFs). 

(a) HKS for one fiber; (b) HKS for two sharply concentrated fibers crossing at 90 degrees; (c) 

HKS for two less concentrated fibers crossing at 90 degrees; (e) HKS for two unequally 

weighted fibers crossing at 90 degrees; (f) HKS for three fibers, each with an equal weighting. 

Red colors indicate high HKS values and blue colors indicate low HKS values. A high HKS 

value indicates a high Gaussian curvature point, i.e., a potential ODF local maximum. 

2.3 Peak matching using Möbius Transformation and Möbius Voting 

As any ODF is defined on a spherical domain, we can use stereographic projection 

to project the 3D spherical surface into the 2D complex plane. In the Cartesian coor-

dinates (x, y, z) on the sphere and (X, Y) on the plane, the projection and its inverse are 

given by the formulae: 
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In geometry, a Möbius transformation of the plane is a rational function of the 

form: 
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- involving one complex variable z; here the coefficients a, b, c, d are complex num-

bers satisfying ad − bc ≠ 0. In order to compare two ODFs, it is desirable to adjust the 

conformal mapping to match the geometric features on the ODF as well as possible. 

So we use the least-squares approach to compute an optimal Möbius transformation 

[18]. 
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where zi is the stereographic projection of pi , i is the projection of qi. g is the con-

formal factor from the plane to the sphere, which may be simplified as: 
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with   ̅ is the complex conjugate of complex number z. To ensure the peaks are 

matched in the right order, we use the “Möbius voting” concept [19]. Prior work [19] 

reported an algorithm to automatically discover surface point correspondences by 

optimizing Möbius transformation parameters. Isometries are a subset of the Möbius 

group. As the Möbius group is low-dimensional (6 DOF for the topological sphere), 

one can compute a closed-form Möbius transformation after selecting three matching 



points. By permuting matching points, one can obtain “votes” for predicted corre-

spondences by measuring the mismatch energy values. We borrow this idea here to 

find the best diffeomorphism to match different ODFs. The Möbius group is much 

bigger than congruence, e.g., voxel rotation, which has been typically used for 

HARDI registration before [5]. Möbius transformation still only has limited numbers 

of parameters, making subsequent optimization work simpler. In this study, we per-

mute all possible combinations of matched features to minimize the L
2
 norm between 

the transformed versions of ODF1 and ODF2 (if we assume we are mapping ODF1 to 

ODF2).  

2.4 Overall framework 

The current framework is summarized as follows: 

(a) Use a preliminary whole-brain registration method (affine or non-linear) to reg-

ister the entire diffusion image from one subject to a target subject. This en-

sures all relevant brain tissues are roughly matched; 

(b) Calculate the ODF at each voxel for both the source image (to be registered) 

and the target image;  

(c) Compute the HKS for each ODF in both source and target and determine the 

peak number and locations for each ODF; 

(d) For corresponding ODFs between source and target, use Möbius transformation 

(and voting) to achieve finer-scale alignment of peaks. 

3 Experimental Results 

3.1 ODF Rotation in a Synthetic Example 

We studied different registration situations to match ODFs with different numbers 

of peaks ranging from 1 to 3 peaks. In a prior work [1], it was found that the number 

of detectable peaks in a voxel generally lies between 1 and 3, with more than one 

peak in more than 40% of voxels. A voxel with more than 3 fibers crossing is less 

plausible for neurobiological reasons, unless the voxels are so large that many tracts 

are present and in such case a very high angular sampling would be needed to resolve 

more peaks. To illustrate the simplest case, multiple fibers were created, crossing at 

90 degrees with equal volume fractions. Here we chose λ1/ λ2=5:1 as the ratio of ei-

genvalues for each cylinder-shape tensor (FA= 0.77, typical for white matter in the 

brain) to generate simulated ODFs using discrete mixtures of Gaussian distributions 

(Eq. 9). The basic idea for ODF registration is to match the dominant directions. Our 

registrations included matching pairs of ODFs with different numbers of peaks, with 

results shown in Fig. 2.  
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Fig. 2. Illustration of ODF rotation in the synthetic dataset. In each row, two ODFs and 

their corresponding HKS are shown in Columns B and C; column A shows the ODF computed 

from registering C to B, and column D shows the ODF computed from registering B to C. The 

first row shows the registration between 1 and 2, the second row for 2 vs. 2 and the last row is 

for 2 vs. 3. 

The symmetric Kullback–Leibler distance (sKL) between the average registered 

ODFs and the template ODF was used to quantitatively evaluate the proposed meth-

od, according to Eq. 10: 
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In this equation, pi and qi (i=1, 2…642) are the sampled points on the two ODF 

surfaces, as described in Section 2.1. 

In the simulation experiment (Fig. 3), we generated two fibers crossing at 90 de-

grees, and diffusion-weighted measurements were sampled from 94 directions (same 

as the protocol used for the human brain experiments in Section 3.2). Rician noise 

(SNR=5) in was added to each of the diffusion-weighted measurements and the ODF 

was computed using TDF theory (Eq. 1). We repeated this process 100 times, and we 

then calculated the averaged ODF with and without the adjustment of our proposed 

method. The sKL between the original ODF and averaged ODF - without adjustment 

- is 2.22 times higher than the sKL between original ODF and averaged ODF with the 

adjustment of our proposed method. This suggests how noise may affect the results, 

and how our proposed method should improve the statistical results. With the added 

noise, the averaged ODF – once it has been adjusted with our proposed method – 

offers a significant advantage in recognizing the dominant directions, compared to 



using the averaged ODF without adjustment. In the next section, we evaluate our 

methods on human brain data. 

 

Fig. 3. Validation of our proposed method on a synthetic dataset. Here we define the 

ground truth as two fibers, crossing at 90 degrees. For this simulation, diffusion-weighed meas-

urements were generated in each of 94 directions – the same gradient vector table as is used for 

our human datasets – and Rician noise (SNR=5) was added. Then the ODF was reconstructed 

using TDF theory. This process was repeated 100 times and all ODFs were averaged with and 

without adjustment by the proposed method. Without the alignment of peaks, the average ODF 

is very close to a sphere, and it is hard to see any evidence of peaks in the resulting ODF at all. 

The ODF that is created after peak matching is still not sharp – as it results from averaging 

many very noisy datasets, but it has more readily identifiable peaks. There is an evident ad-

vantage in retaining the dominant directions in the averaged ODF. 

3.2 Real Brain ODF Transformation 

Diffusion-weighted scans were acquired from 10 healthy adult participants (mean 

age: 23.8±2.4 years, 5 male) on a 4T MRI scanner. 105 gradient images were collect-

ed including 11 baseline (b0) images with no diffusion sensitization and 94 diffusion-

weighted images (b-value: 1159 s/mm
2
) (see [20] for details). Firstly, a non-linear 

registration method [21] was used to match the overall brain shape. After this pre-

registration, TDF-derived ODFs for each subject were computed.  



Before describing the adjustment of ODFs using our proposed methods, we first 

evaluate the necessity of performing ODF adjustment when computing ODF-based 

statistics. Here, we investigated the variation in the ODFs’ dominant directions, 

among ten registered subjects [21]. The dominant direction of the ODF was defined 

as the direction with the maximum ODF surface value. Fig. 4 shows the maximum 

dominant direction discrepancy (in units of radians) across ten subjects’ correspond-

ing voxels, for one brain slice. To further quantify the result, we calculated the varia-

bility in the dominant direction for the ROI-based mean ODF. In the corpus callosum 

ROI, the mean variation was 0.1 radian (4.6
0
) while it was as high as 0.6 radian 

(33.8
0
) in the fiber crossing region of the superior longitudinal fasciculus for ten reg-

istered subjects. This enormous degree of variance suggests that the ODF peak ad-

justment would be beneficial for ODF-based statistics, or else comparable regions 

would not be averaged together. 

 

 

Fig. 4. ODF dominant direction variation across subjects. This result represents the ODF 

dominant direction discrepancy among ten registered subjects, in units of radians. The higher 

the value is, the greater is the disagreement in the ODF dominant directions among registered 

subjects. If fiber direction vary this much even in registered data, it makes sense to investigate 

further alignment of ODF peaks, before comparing ODFs across subjects.  

Then we chose one subject as the target, we used our method to more accurately 

register all other subjects’ ODF to the target. (Note that more complex methods could 

be used to select a target, e.g. the subject with least summed distance to the others, in 

some appropriate metric). Fig. 5a is the template subject’s ODF; Fig. 5b shows the 

directly averaged ODFs across 10 subjects, using standard pointwise averaging of the 

ODF data across subjects, in spherical coordinates. Fig. 5c shows averaged registered 

ODFs across 10 subjects, after using the methods proposed in this paper. Compared to 

Fig. 5a, Fig. 5b’s main fiber tracts are blurred away due to the variance among the 



subjects, and due to the lack of a method to align and constructively reinforce them. 

In Fig. 5c, the main fiber tracts have been retained and even reinforced after averag-

ing ODF data across subjects. 

 

Fig. 5. ODF plots from individuals, and computation of population averages. (a) A typical 

subject’s ODF field - this subject’s scan was used as the target for registration, and other sub-

jects’ data was aligned to it; (b) directly averaged ODF across 10 subjects, without any ODF 

alignment - note the blurring of the features; (c) averaged registered ODF across 10 subjects, 

using the methods proposed in this paper. The colors represent the dominant fiber direction, 

mapped as a 3D vector to the RGB space: red for left-right, blue for superior-inferior, and 

green for anterior-posterior. 

4 Conclusion and Future Work 

Here we proposed a general method - based on the HKS and Möbius transfor-

mation - to register fields of spherical functions, such those that arise in analyses of 

diffusion imaging data from a population. The novelty of our work is twofold. First, 

we use HKS, which is proportional to Gaussian curvature, to objectively locate peaks; 

second, we optimize the matching energy between ODF by Möbius voting, to find the 

best transformation parameters. 

Our paper has some limitations. It may not always be meaningful to align ODFs 

with different numbers of peaks; in this case, going further and explicitly extracting 

global paths for the fibers may help to resolve ambiguities. This may also help to 

compute a spatial coherent matching field across voxels. In future, we plan further 

numerical analysis of the accuracy of the ODF re-orientation at an individual level 

and of the accuracy when averaging entire ODF fields. Comparative studies with 

other ODF registration methods (e.g., with fidelity metrics based on information theo-

ry) would also be of interest.  

Perhaps surprisingly, diffusion imaging has exquisite angular resolution but this is 

generally thrown away and reduced to a single scalar measure per voxel, prior to cross 

subject comparisons and population analyses. Here we show that by matching peaks 



on ODFs, we can average data in way that constructively reinforces the available 

features. This effort should be useful in ongoing projects to define characteristic pat-

terns of fiber integrity and geometry in disease, as well as changes with disease pro-

gression and over the human lifespan. In addition, Möbius transformations can do 

more than just rotate the full ODF, and could be part of future Möbius-driven global 

nonlinear registration, using a cost function derived from the local Möbius transfor-

mation to drive a global 3D image flow and then apply the image flow back to the 

ODF. Here we show HKS and Möbius transformation can reliably used for local max-

ima detection and matching in ODF registration. 

 

References 

 

1.  Anonymous 

2.  Leow, A.D., Zhan, L., Zhu, S.W., Hageman, N,S., Chiang, M.C., Barysheva, M., Toga, 

A.W., McMahon, K., de Zubicaray, G.I., Wright, M.J., Thompson, P.M.: White matter in-

tegrity measured by fractional anisotropy correlates poorly with actual individual fiber ani-

sotropy. In Proceedings of the 6th IEEE international Symposium on Biomedical Imaging: 

From Nano to Macro, ISBI2009, 622-625 (2009). 

3.  Lee, A.D., Lepore, N., Brun, C., Chou, Y.Y., Barysheva, M., Chiang, M.C., Madsen, S.K., 

de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Tensor-

based analysis of genetic influences on brain integrity using DTI in 100 twins. Med Image 

Comput Comput Assist Interv, 12:967-974 (2009). 

4.  Jin, Y., Shi, Y.G., Jahanshad, N., Aganj, I., Sapiro, G., Toga, A.W., Thompson, P.M.: 3D 

elastic registration improves HARDI-derived fiber alignment and automated tract cluster-

ing. In Proceedings of the 8th IEEE international Symposium on Biomedical Imaging: 

From Nano to Macro, ISBI2011, 822-826 (2011). 

5.  Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized 

positive-definite fourth order tensor field estimation from DW-MRI. Neuroimage. 45: 153-

162 (2009). 

6.  Geng, X., Ross, T.J., Zhan, W., Gu, H., Chao, Y.P., Lin, C.P., Christensen, G.E., Schuff, 

N., Yang, Y.: Diffusion MRI registration using orientation distribution functions. Inf Pro-

cess Med Imaging, 21:626–637 (2009). 

7.  Cheng, G., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Non-rigid Registration of High An-

gular Resolution Diffusion Images Represented by Gaussian Mixture Fields. Med Image 

Comput Comput Assist Interv, 5761: 190-197 (2009). 

8.  Hong, X., Arlinghaus, L.R., Anderson, A.W.: Spatial normalization of the fiber orienta-

tion distribution based on high angular resolution diffusion imaging data. Magn Reson 

Med. 61:1520–1527 (2009). 

9.  Bloy, L., Verma, R.: Demons registration of high angular resolution diffusion images. 

ISBI 1013–1016 (2010). 

10. Yap, P.T., Chen, Y., An, H., Yang, Y., Gilmore, J.H., Lin, W., Shen, D.: SPHERE: SPher-

ical Harmonic Elastic REgistration of HARDI data. Neuroimage. 55:545–556 (2011). 

11. Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: A non-parametric Riemannian frame-

work for processing high angular resolution diffusion images and its applications to ODF-

based morphometry. Neuroimage. 56:1181–1201 (2011). 

12. Chiang, M.C., Leow, A.D., Klunder, A.D., Dutton, R.A., Barysheva, M., Rose, S.E., 

McMahon, K.L., de Zubicaray, G.I., Toga, A.W., Thompson, P.M.: Fluid registration of 



diffusion tensor images using information theory. IEEE Trans Med Imaging, 27:442–456 

(2008). 

13. Leow, A.D., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G.I., Meredith, M., Wright, 

M.J., Toga, A.W., Thompson, P.M.: The tensor distribution function. Magn Reson Med. 

61:205–214. (2009). 

14. Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to recon-

struct multiple fibers from diffusion weighted MRI. IEEE Trans Med Imaging 26:1464–

1471. (2007). 

15. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of 

the orientation distribution func-tion in single- and multiple-shell q-ball imaging within 

constant solid angle. Magn Reson Med. 64:554–566. (2010). 

16. Sun, J.,Ovsjanikov, M., Guibas, L.: A concise and prov-ably informative multi-scale sig-

nature based on heat diffusion. Computer Graphics Forum 28(5):1383–1392.(2009). 

17. Hsu, E.P. Stochastic Analysis on Manifolds. American Mathematical Society (2002). 

18. Gu, X.F., Wang, Y.L., Chan, T.F., Thompson, P.M., Yau S.T.: Genus zero surface con-

formal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag., 

23(8):949–958 (2004). 

19. Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. SIGGRAPH, 

72:1–12. (2009). 

20. Anonymous 

21. Jahanshad, N., Lee, A.D., Barysheva, M., McMahon, K.L., de Zubicaray, G.I., Martin, 

N.G., Wright, M.J., Toga, A.W., Thompson, P.M.: Genetics Influences on Brain Asym-

metry: A DTI Study of 374 Twins and Siblings. Neuroimage 15; 52(2):455-69 (2010). 


