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Abstract We propose a novel method to apply Teichmüller1

space theory to study the signature of a family of noninter-2

secting closed 3D curves on a general genus zero closed sur-3

face. Our algorithm provides an efficient method to encode4

both global surface and local contour shape information.5

The signature—Teichmüller shape descriptor—is computed6

by surface Ricci flow method, which is equivalent to solv-7

ing an elliptic partial differential equation on surfaces and8

is numerically stable. We propose to apply the new signa-9

ture to analyze abnormalities in brain cortical morphometry.10

Experimental results with 3D MRI data from Alzheimer’s11

disease neuroimaging initiative dataset [152 healthy con-12

trol subjects versus 169 Alzheimer’s disease (AD) patients]13

demonstrate the effectiveness of our method and illustrate14

its potential as a novel surface-based cortical morphometry15

measurement in AD research.16
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1 Introduction 19

Some neurodegenerative diseases, such as Alzheimer’s dis- 20

ease (AD), are characterized by progressive cognitive dys- 21

function. The underlying disease pathology most probably 22

precedes the onset of cognitive symptoms by many years. 23

Efforts are underway to find early diagnostic biomarkers to 24

evaluate neurodegenerative risk presymptomatically in a suf- 25

ficiently rapid and rigorous way. Among a number of dif- 26

ferent brain imaging, biological fluid, and other biomarker 27

measurements for use in the early detection and tracking of 28

AD, structural magnetic resonance imaging (MRI) measure- 29

ments of brain shrinkage are among the best established bio- 30

markers of AD progression and pathology. 31

In structural MRI studies, early researches (Thompson 32

and Toga 1996; Fischl et al. 1999) have demonstrated that 33

surface-based brain mapping may offer advantages over 34

volume-based brain mapping work (Ashburner et al. 1998) 35

to study structural features of the brain, such as cortical 36

gray matter thickness, complexity, and patterns of brain 37

change over time due to disease or developmental processes. 38

In research studies that analyze brain morphology, many 39

surface-based shape analysis methods have been proposed, 40

such as spherical harmonic analysis (Gerig et al. 2001; Chung 41

et al. 2008), minimum description length approaches Davies 42

et al. 2003, medial representations (M-reps) (Pizer et al. 43

1999), cortical gyrification index (Tosun et al. 2006), shape 44

space (Liu et al. 2010), metamorphosis (Trouve and Younes 45

2005), momentum maps (Qiu and Miller 2008), conformal 46

invariants (Wang et al. 2009), and so on; these methods 47

may be applied to analyze shape changes or abnormalities 48

in cortical and subcortical brain structures. Among these 49

approaches, most of them relied on local geometric fea- 50

tures, e.g., thickness or distance. In contrast, our method 51

focuses on both local geometries of functional regions and 52
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geometric relations among them. When the regions with the53

same local geometries are glued together with a different pat-54

tern, introducing some twisting or tensions, our signatures55

will be changed significantly. Our Teichmüller shape space56

approach provides measurements on the intrinsic confor-57

mal structure by computing global intrinsic angle-invariant58

shape descriptors. This local–global view based on confor-59

mal geometry would be highly advantageous for AD bio-60

marker research.61

In order to compute the conformal welding signature, we62

need to map each functional area onto the planar domain first.63

This can be accomplished by using the Ricci flow method.64

Ricci flow is a powerful tool to compute the conformal struc-65

tures for any arbitrary surfaces. It has been successfully used66

to prove the Poincaré conjecture. Ricci flow deforms a Rie-67

mannian metric conformally according to curvature propor-68

tionally like a heat diffusion process such that the curvatures69

evolve and eventually become constant everywhere. The dis-70

crete surface Ricci flow has been presented in (Jin et al. 2008;71

Zeng et al. 2010; Wang et al. 2012).72

1.1 AD-Related Motivation73

MRI-based measures of atrophy are regarded as valid mark-74

ers of AD state and progression. Atrophy of brain struc-75

tures is associated with cognitive impairment in normal aging76

and AD (Frisoni et al. 2010; Fox et al. 1999), and typically77

results from a combination of neuronal atrophy, cell loss,78

and impairments in myelin turnover and maintenance, and79

corresponding reductions in white matter volume. These cel-80

lular processes combine at the macroscopic level to induce81

observable differences on brain MRI. Several of processes82

(such as cellular atrophy) occur with normal aging, and oth-83

ers (including neuronal loss) are further promoted by amyloid84

plaque and neurofibrillary tangle deposition. Although sur-85

face expansion and contraction are less traditional measures86

of morphometry, it is likely that they simply reflect the same87

processes that cause progressive brain tissue loss.88

Our work, as well as some approaches developed by other89

groups [e.g., Jack et al. (2004); Cuingnet et al. (2011); Chin-90

carini et al. (2011); Wang et al. (2011)], measures the extent91

and severity of cortex volume, grey matter thickness, hip-92

pocampal and ventricular shape deformations as a proxy93

for grey matter loss, hippocampal atrophy and ventricu-94

lar enlargement. The detected compression (or expansion95

for lateral ventricle) of the surface areas is associated with96

macrostructural and microstructural loss in different brain97

regions and makes them useful indices of the neurodegen-98

erative process. Besides grey matter thickness, it would be99

beneficial to have a stable surface area related statistics. The100

Teichmüller shape signature we proposed here is such a fea-101

ture set which quotients out scaling, translation, rotation, gen-102

eral isometric deformation, and conformal deformation and103

enables a more exact comparison of brain cortex changes. 104

In addition, our signature depicts the correlations between 105

AD-related functional areas (see Shi et al. 2011) and the 106

whole brain cortical surface, and has the powerful ability to 107

recover the shape of the whole brain surface. All of these 108

motivate us to apply the new signature to AD detection and 109

we believe it will pave a novel way for shape analysis in AD 110

study. 111

This work was inspired by Sharon and Mumford’s work 112

Sharon and Mumford (2006) and generalized the idea from 113

2D shape space to 3D shape space. We propose a novel and 114

intrinsic method to compute the global correlations between 115

various surface region contours in Teichmüller space and 116

apply it to study brain morphology in AD. The proposed 117

shape signature demonstrates the global geometric features 118

encoded in the regions of interest (ROI), which are regarded 119

as a biomarker for measurements of AD progression and 120

pathology. It is based on the brain surface conformal struc- 121

ture (Hurdal and Stephenson 2004; Angenent et al. 2000; Gu 122

et al. 2004; Wang et al. 2007) and can be accurately com- 123

puted using the discrete surface Ricci flow method (Jin et al. 124

2008; Zeng et al. 2010; Wang et al. 2006). Theoretically, the 125

signature is guaranteed to be a complete and global shape 126

descriptor based on Teichmüller space theory and conformal 127

welding theory. 128

1.2 Related Work 129

In this work, we perform AD detection by studying the mor- 130

phometry of brain cortical surface. Besides the discussion 131

of AD detection applications in the above, here, we first 132

review the literature on brain morphometry study research. 133

Due to our method is based on conformal brain mapping, we 134

then review surface-based brain mapping methods, which are 135

closely related to surface parameterizations. Furthermore, we 136

review the work of Sharon and Mumford Sharon and Mum- 137

ford (2006), which inspired our current conformal welding 138

signature. 139

In brain morphometry study research, volumetric mea- 140

sures of structures identified on 3D MRI have been used to 141

study group differences in brain structure and also to predict 142

diagnosis (Ashburner et al. 1998). Recent work has also used 143

shape-based features (Liu et al. 2010; Trouve and Younes 144

2005; Qiu and Miller 2008) and conformal invariants (Wang 145

et al. 2009) analyzing surface changes using pointwise dis- 146

placements of surface meshes, local deformation tensors, or 147

surface expansion factors, such as the Jacobian determinant 148

of a surface based mapping. For closed surfaces homotopic 149

to a sphere, spherical harmonics have commonly been used 150

for shape analysis, as have their generalizations, e.g., eigen- 151

functions of the Laplace–Beltrami operator in a system of 152

spherical coordinates. These shape indices are also rotation 153

invariant, i.e., their values do not depend on the orientation 154
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of the surface in the embedding space (Thompson and Toga155

1996; Gerig et al. 2001; Shen et al. 2007). Chung et al. (2008)156

proposed a weighted spherical harmonic representation. For a157

specific choice of weights, the weighted SPHARM is shown158

to be the least square approximation to the solution of an159

anisotropic heat diffusion on the unit sphere. Davies et al.160

Davies et al. (2003) performed a study of anatomical shape161

abnormalities in schizophrenia, using the minimal distance162

length approach to statistically align hippocampal parame-163

terizations. For classification, linear discriminant analysis or164

principal geodesic analysis can be used to find the discrim-165

inant vector in the feature space for distinguishing diseased166

subjects from healthy control subjects. Tosun et al. (2006)167

proposed the use of three different shape measures to quan-168

tify cortical gyrification and complexity. Gorczowski (2007)169

presented a framework for discriminant analysis of popula-170

tions of 3D multi-object sets. In addition to a sampled medial171

mesh representation (Pizer et al. 1999), they also considered172

pose differences as an additional statistical feature to improve173

the shape classification results. Based on discrete Laplace-174

Beltrami operator, heat kernel method (Chung et al. 2005)175

was also applied to 3D biological shape analysis (Lai et al.176

2010).177

For brain surface parameterization research, Schwartz178

et al. (1989) and Timsari and Leahy (2000) computed179

quasi-isometric flat maps of the cerebral cortex. Hurdal and180

Stephenson (2004 reported a discrete mapping approach that181

uses circle packings to produce “flattened” images of cortical182

surfaces on the sphere, the Euclidean plane, and the hyper-183

bolic plane. Angenent et al. (2000) implemented a finite ele-184

ment approximation for parameterizing brain surfaces via185

conformal mappings. Gu et al. (Gu et al. 2004) proposed a186

method to find a unique conformal mapping between any two187

genus zero manifolds by minimizing the harmonic energy of188

the map. The holomorphic 1-form based conformal para-189

meterization (Wang et al. 2007) can conformally parame-190

terize high genus surfaces with boundaries but the resulting191

mappings have singularities. Other brain surface conformal192

parametrization methods, the Ricci flow method (Wang et al.193

2006) and slit map method (2008), can handle surfaces with194

complicated topologies (boundaries and landmarks) without195

singularities. Wang et al. (2009) applied the Yamabe flow196

method to study statistical group differences in a group of 40197

healthy controls and 40 subjects with Williams syndrome,198

showing the potential of these surface-based descriptors for199

localizing cortical shape abnormalities in genetic disorders200

of brain development.201

Conformal mappings have been applied in computer202

vision for modeling the 2D shape space by Sharon and203

Mumford (2006). The image plane is separated by a 2D204

contour, both interior and exterior are conformally mapped205

to disks, then the contour induces a diffeomorphism of the206

unit circle (a differentiable and invertible, periodic function),207

which is the signature of the contour. The signature is invari- 208

ant under translations and scalings, and able to recover the 209

original contour by conformal welding. Later, this method is 210

generalized to model multiple 2D contours with inner holes 211

in Lui et al. (2010). To the best of our knowledge, our method 212

is the first one to generalize Sharon and Mumford’s 2D shape 213

space to 3D surfaces, also from simply connected domains 214

to multiply connected domains. The proposed signature con- 215

siders the correlation of the regions surrounded by separate 216

closed contours. 217

1.3 Our Approach 218

For a 3D surface, all the contours (simple closed curves on the 219

3D surface) represent the “shape” of the surface. Inspired by 220

the beautiful research work of Sharon and Mumford (2006) 221

on 2D shape analysis [recently it has been generalized to 222

model multiple 2D contours Lui et al. (2010)], we build a 223

Teichmüller space for 3D shapes using conformal mappings. 224

In this Teichmüller space, each 3D shape is represented by a 225

point in the space; each point denotes a unique equivalence 226

class up to Möbius transformations, which are conformally 227

equivalent transformations. 228

Given a genus zero closed 3D surface with nonintersecting 229

contours on the surface, each contour surrounds a 3D patch 230

with disk topology; all the contours partition the whole sur- 231

face to a set of 3D simply-connected patches and a 3D base 232

surface with multiple boundaries. By conformal mapping, 233

the base surface can be mapped to a circle domain where one 234

boundary is mapped to the exterior unit disk, other boundaries 235

are mapped to the interior circles. The centers and radii of all 236

the interior circles form a conformal invariant, called confor- 237

mal module, unique up to Möbius transformations. Similarly, 238

by conformal mapping, each 3D patch is mapped to a unit 239

disk; therefore, each contour has two circle mapping results, 240

one is on the foreground unit disk mapping, the other is on 241

the base circle domain. Then a diffeomorphism of the unit 242

circle is constructed between these two circle mappings to 243

form a shape descriptor for the corresponding contour. For a 244

3D surface, the conformal module and the diffeomorphisms 245

of all the contours together form a global and unique shape 246

representation of the surface, called Teichmüller coordinates 247

in Teichmüller space; and vice versa, the representation can 248

recover the 3D contours on the 3D surface uniquely. By using 249

this signature, the similarities of 3D shapes can be quantita- 250

tively analyzed, therefore, the classification and recognition 251

of 3D objects can be performed from their observed contours. 252

1.3.1 Geometric Intuition 253

The brain cortical surface is partitioned to different functional 254

regions, each region is conformally mapped to a canonical 255

space such that its boundary curves are mapped to circles. 256
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(a) (b) (c) (d)

Fig. 1 Diffeomorphism signature via uniformization mapping for a
genus zero surface with 3 simple closed contours. The curve on surface
γi in (a) surrounds the patch Si in (c) and is mapped to the bound-

ary ci of the circle domain Di in (c). The curve γi is also mapped to
the boundary of the base circle domain D0 in (b). The curves in (d)

demonstrate the diffeomorphisms for the 3 contours

Then the boundary of each region induces a diffeomorphism257

from the unit circle to itself. The shapes of canonical spaces258

and the automorphisms of the unit circle form the signature.259

Intuitively, the signature depends on many factors, not260

only the geometry of the whole cortical surface and the261

geometries of the regions, but also (more importantly) the262

pattern to glue the regions to form the whole surface. For263

example, if the geometry of one functional area is changed,264

then part of the signature related to that area will be changed;265

on the other hand, if we partition the whole surface dif-266

ferently, by enlarging some areas and shrinking the others,267

or alter the boundary of one area, then the signature will268

be changed. Furthermore, if some shifting, twisting, or tor-269

sion along the gluing boundaries is introduced during the270

gluing process, then the signature will be changed accord-271

ingly. Therefore, the proposed signature has a unique local-272

global view. Namely, our signatures reflect both the local273

geometries of regions and the global intrinsic relations among274

them. Most existing methods emphasize on the geometries275

of regions, in contrast, our method also emphasizes the geo-276

metric relations.277

Theoretically, according to Teichmüller theory and con-278

formal welding theory, the boundaries of the regions can be279

reconstructed from their signatures. Furthermore, the sig-280

nature is invariant to scaling, translation, rotation, general281

isometric deformation, and conformal deformation. All the282

signatures form an abstract Riemannian manifold; the dis-283

tance among different signatures can be measured by special284

metrics. The signature is sensitive to the area change and the285

change of geometric relations. In AD morphometry study,286

when human brain cortical surface has atrophy, the signature287

changes correspondingly. For example, if a functional area288

shrinks, the corresponding circle of the contour decreases to289

some extent on the canonical domain, the twisting or sur-290

face tension change will be reflected by the signature as291

well.292

Our work is based on conformal geometry, which is the293

study of a set of angle-preserving transformations. All metric294

oriented surfaces have conformal structures so it is a universal 295

structure for surface study. The Teichmüller space is a quo- 296

tient space of conformal equivalence relation. Similar to that 297

isometry indicates the deformation that does not change dis- 298

tance between any two points on the surface, a conformal 299

structure induces the deformation that does not change angle 300

structure between any two curves on the surface. So the pro- 301

posed statistics measures the difference between surfaces 302

with different conformal structures. Among all the diffeo- 303

morphisms between the surfaces, there exists a unique one 304

that induces the minimal angle distortion. This distortion can 305

be utilized as the distance. 306

1.3.2 Contributions 307

To the best of our knowledge, it is the first work to apply 308

conformal module and contour diffeomorphisms together 309

to brain morphometry research. Our experimental results 310

demonstrate that this novel and simple method may be use- 311

ful to analyze certain functional areas, and it may shed some 312

lights on detecting abnormality regions in brain surface mor- 313

phometry. Our major contributions in this work are as fol- 314

lows: 315

1. A new method to compute Teichmüller shape descriptor, 316

in a way that generalized a prior 2D domain conformal 317

mapping work Sharon and Mumford (2006). 318

2. The method is theoretically rigorous and general, which 319

presents a stable way to calculate the diffeomorphisms of 320

contours in general 3D surfaces based on surface Ricci 321

flow method. 322

3. It involves solving elliptic partial differential equations 323

(PDEs), so it is numerically efficient and computationally 324

stable. 325

4. The shape descriptors are unique, global and invariant to 326

rigid motion and conformal deformations. 327
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1.3.3 Pipeline328

Figure 1 shows the pipeline for computing the conformal329

module and diffeomorphism signature for a 3D surface with330

3 closed contours. Here, we use a human brain hemisphere331

surface whose functional areas are divided and labeled in332

different color. The contours (simple closed curves) of func-333

tional areas can be used to slice the surface open to con-334

nected patches. As shown in frames (a–c), three contours335

γ1, γ2, γ3 are used to divide the whole brain (a genus zero336

surface S) to 4 patches S0, S1, S2, S3; each of them is con-337

formally mapped to a circle domain (e.g., disk or annuli),338

D0, D1, D2, D3. Note that γ1, γ2, γ3 are the contours of the339

inferior parietal area, the fusiform area, and the superior340

frontal area, respectively. In (b), the base circle domain is341

normalized by Möbius transformation, such that the circle342

c2 is centered at origin, c3 is centered along imaginary-axis,343

then conformal module of the base domain is defined as the344

centers and radii of circles c2, c3, i.e., Mod = (r2, y3, r3) =345

(0.042263, 0.136767, 0.063546), where ri and (xi + iyi )346

denote the radius and the center of circle ci , respectively.347

In the mapping results, one contour is mapped to two cir-348

cles in two mappings. The representation of the shape cor-349

responding to each contour is a diffeomorphism of the unit350

circle to itself, defined as a mapping between periodic polar351

angles (θ1, θ2), θ1, θ2 ∈ [0, 2π ]. The proper normalization352

is employed to remove Möbius ambiguity. As shown in (d),353

the curves demonstrate the diffeomorphisms for three con-354

tours. The diffeomorphisms induced by the conformal maps355

of each curve together with the conformal module form a356

unique shape signature, which is the Teichmüller coordinates357

in Teichmüller space and may be used for shape comparison358

and classification.359

We tested our algorithm in the segmented regions on a set360

of brain left cortical surfaces extracted from 3D anatomical361

brain MRI scans from Alzheimer’s Disease Neuroimaging362

Initiative (ADNI) dataset (152 healthy control subjects versus363

169 AD patients). The proposed method can reliably com-364

pute the shape signatures on three cortical functional areas by365

computing the conformal modules and the diffeomorphisms366

of all the three contours. Using these signatures as statis-367

tics, our method achieved the 95 percent confidence interval368

91.38±0.55 % for the average accuracy rate to differentiate369

a set of AD patients from healthy control subjects.370

1.3.4 Organization371

The paper is organized as follows: Sect. 2 introduces the the-372

oretical background on surface uniformization and Teich-373

müller space and gives the main theorem about the novel374

shape signature. Section 3 introduces the computation details375

of the proposed Teichmüller shape descriptor. Numerical376

experiments and applications to AD study are discussed in377

Sect. 4. Section 5 concludes the paper and gives the future 378

work. The theoretic proof for the main theorem is detailed in 379

Appendix section. 380

2 Theoretical Background 381

In this section, we briefly introduce the theoretical foun- 382

dations necessary for the current work. For more details, 383

we refer readers to the classical books, such as Riemann 384

surface theory (Farkas and Kra 1991), Teichmüller theory 385

(Gardiner and Lakic 2000), differential geometry (Schoen 386

and Yau 1994), and complex analysis (Henrici 1988). 387

2.1 Surface Uniformization Mapping 388

Conformal mapping between two surfaces preserves angles. 389

Suppose (S1, g1) and (S2, g2) are two surfaces embedded in 390

R
3, g1 and g2 are the induced Riemannian metrics. 391

Definition 1 (Con f ormal Mapping) A mapping φ : S1 → 392

S2 is called conformal, if the pull back metric of g2 induced 393

by φ on S1 differs from g1 by a positive scalar function: 394

φ∗g2 = e2λg1, (1) 395

where λ : S1 → R is a scalar function, called the conformal 396

factor. 397

For example, all the conformal automorphisms of the unit 398

disk form the Möbius transformation group of the disk, each 399

mapping is given by 400

z → eiθ z − z0

1 − z̄0z
. (2) 401

All the conformal automorphism group of the extended com- 402

plex plane C ∪ {∞} is also called Möbius transformation 403

group, each mapping is given by 404

z →
az + b

cz + d
, ad − bc = 1, a, b, d, c ∈ C. (3) 405

By stereo-graphic projection, the unit sphere can be confor- 406

mally mapped to the extended complex plane. Therefore, the 407

Möbius transformation group is also the conformal automor- 408

phism group of the unit sphere. 409

A circle domain on the complex plane is the unit disk with 410

circular holes. A circle domain can be conformally trans- 411

formed to another circle domain by Möbius transformations. 412

All genus zero surfaces with boundaries can be conformally 413

mapped to circle domains: 414

Theorem 1 (Uniformization) Suppose S is a genus zero Rie- 415

mannian surface with boundaries, then S can be conformally 416

mapped onto a circle domain. All such conformal mappings 417

differ by a Möbius transformation on the unit disk. 418
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This theorem can be proved using Ricci flow straight-419

forwardly. Therefore, the conformal automorphism group of420

SCon f (S) is given by421

Con f (S) := {φ−1 ◦ τ ◦ φ|τ ∈ Möb(S2)}. (4)422

2.2 Teichmüller Space423

Definition 2 (Con f ormal Equivalence) Suppose (S1, g1)424

and (S2, g2) are two Riemann surfaces. We say S1 and S2 are425

conformal equivalent if there is a conformal diffeomorphism426

between them.427

All Riemann surfaces can be classified by the confor-428

mal equivalence relation. Each conformal equivalence class429

shares the same conformal invariants, the so-called confor-430

mal module. The conformal module is one of the key com-431

ponent for us to define the unique shape signature.432

Definition 3 (Teichmüller Space) Fixing the topology of the433

surfaces, all the conformal equivalence classes form a man-434

ifold, which is called the Teichmüller space.435

The Teichmüller space is a quotient space of confor-436

mal equivalence relation. For example, all topological disks437

(genus zero Riemann surfaces with single boundary) can be438

conformally mapped to the planar disk. Therefore, the Teich-439

müller space for topological disks consists of a single point.440

All the surfaces in real life are Riemann surfaces, therefore441

with conformal structures. Two surfaces share the same con-442

formal structure, if there exists a conformal mapping between443

them. Conformal modules are the complete invariants of con-444

formal structures and intrinsic to surface itself. They can445

serve as the coordinates in Teichmüller space.446

Suppose a genus zero Riemann surface S has b boundary447

components {γ1, γ2, . . . , γb}, ∂S = γ1 + γ2 + . . . + γb, φ :448

S → D is the conformal mapping that maps S to a circle449

domain D, such that it satisfies the following Möbius nor-450

malization conditions,451

1. φ(γ1) is the exterior boundary of the D;452

2. φ(γ2) centers at the origin; and453

3. The center of φ(γ3) is on the imaginary axis.454

Definition 4 (Con f ormal Module) The conformal module455

of the surface S (also the circle domain D) is given by456

Mod(S) = {(ci, ri )|i = 1, 2, . . . , b} , (5)457

where (ci = xi + iyi , ri ) denotes the center and the radius of458

circle φ(γi ).459

Due to the Möbius normalization, (c1, r1) = (0 +460

i0, 1), (c2, r2) = (0 + i0, r2), (c3, r3) = (0 + iy3, r3),461

then the Teichmüller space of genus zero surfaces with b462

boundaries is of 3b −6 dimensional. For a doubly connected463

domain, the circle domain by conformal mapping is a unit 464

annulus; its conformal module is of 1 dimensional, defined 465

as 466

− log r2

2π
. (6) 467

Theorem 2 (Teichmüller Space Seppala et al. (1992)) The 468

dimension of the Teichüller space of genus zero surface with 469

b boundaries, T0,b, is 1 if b = 2, and 3b − 6 if b > 2. 470

The Teichmüller space has a so-called Weil-Peterson met- 471

ric Sharon and Mumford (2006), so it is a Riemannian 472

manifold. Furthermore it is with negative sectional curva- 473

ture, therefore, the geodesic between arbitrary two points is 474

unique. 475

2.3 Surface Ricci Flow 476

Surface Ricci flow is the powerful tool to compute uni- 477

formization. Ricci flow refers to the process of deforming 478

Riemannian metric g proportional to the curvature, such that 479

the curvature K evolves according to a heat diffusion process, 480

eventually the curvature becomes constant everywhere. Sup- 481

pose the metric g = (gi j ) in local coordinate. Hamilton 482

(1988) introduced the Ricci flow as 483

dgi j

dt
= −K gi j . (7) 484

Surface Ricci flow conformally deforms the Riemannian 485

metric, and converges to constant curvature metric (Chow 486

et al. 2006). Furthermore, Ricci flow can be used to compute 487

the unique conformal Riemannian metric with the prescribed 488

curvature. 489

Theorem 3 (Hamilton and Chow (Chow et al. 2006)) Sup- 490

pose S is a closed surface with a Riemannian metric. If the 491

total area is preserved, the surface Ricci flow will converge 492

to a Riemannian metric of constant Gaussian curvature. 493

2.4 Teichmüller Shape Descriptor 494

Suppose Ŵ = {γ0, γ1, . . . , γb} is a family of non-intersecting 495

smooth closed curves on a genus zero closed surface. Ŵ 496

segments the surface to a set of connected components 497

{
0,
1, . . . , 
b}, each segment 
i is a genus zero surface 498

with boundary components. Construct the uniformization 499

mapping φk : 
k → Dk to map each segment 
k to a circle 500

domain Dk, 0 ≤ k ≤ b. Assume γi is the common bound- 501

ary between 
 j and 
k , then φ j (γi ) is a circular boundary 502

on the circle domain D j , φk(γi ) is another circle on Dk . Let 503

fi |S1 := φ j ◦φ−1
k |S1 : S

1 → S
1 be the diffeomorphism from 504

the circle to itself, which is called the signature of γi . The 505

above construction process is called conformal welding. 506
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Definition 5 (Signatureof aFamilyo f Loops) The signa-507

ture of a family of non-intersecting closed 3D curves Ŵ =508

{γ0, γ1, . . . , γb} on a genus zero closed surface is defined509

as the combination of the conformal modules of all the510

connected components and the diffeomorphisms of all the511

curves:512

S(Ŵ) := { f0, f1, . . . , fb}513

∪{Mod(D0), Mod(D1), . . . , Mod(Db)}. (8)514

The following main theorem plays fundamental role for515

the current work. Note that if a circle domain Dk is disk, then516

its conformal module can be omitted from the signature.517

Theorem 4 (Main Theorem) The family of smooth 3D518

closed curves Ŵ on a genus zero closed Riemannian surface519

is determined by its signature S(Ŵ), unique up to a conformal520

automorphism of the surface η ∈ Con f (S).521

The proof of Theorem 4 can be found in the Appendix522

section. The main theorem states that the proposed signature523

determine shapes up to a Möbius transformation. We can524

further do a normalization that fixes ∞ to ∞ and that the525

differential carries the real positive axis at ∞ to the real pos-526

itive axis at ∞, as in Sharon and Mumford’s paper (Sharon527

and Mumford 2006). The signature can then determine the528

shapes uniquely up to translation and scaling.529

The shape signature S(Ŵ) gives us a complete representa-530

tion for the space of shapes. It inherits a natural metric. Given531

two shapes Ŵ1 and Ŵ2. Let S(Ŵi ) := { f i
0 , f i

1 , . . . , f i
k } ∪532

{Mod(Di
0), Mod(Di

1), . . . , Mod(Di
k)} (i = 1, 2). We can533

define a metric d(S(Ŵ1), S(Ŵ2)) between the two shape sig-534

natures using the natural metric in the Teichmüller space,535

such as the Weil-Petersson metric Sharon and Mumford536

(2006). Our signature is stable under geometric noise. Our537

algorithm depends on conformal maps from surfaces to circle538

domains using discrete Ricci flow method.539

3 Algorithm540

In this section, we explain the computing details of Teich-541

müller shape descriptor. Given a genus zero 3D surface with542

a family of closed curves, the whole domain is first divided543

by the closed curves into several connected components. We544

compute the conformal mapping for each connected com-545

ponent by circular uniformization; then after Möbius nor-546

malization, compute the conformal modules for each circle547

domain, and the diffeomorphisms for each closed curve. The548

pipeline is shown in Fig. 1.549

3.1 Circular Uniformization Mapping550

We apply discrete Ricci flow method Jin et al. (2008) to551

conformally map the surfaces onto planar circle domains552

Fig. 2 Discrete Ricci flow with circle packing metric. For the triangle
face [vi , v j , vk ], each vertex vi with a circle (vi , ri ), where ri is the
radius,vi is the center; on each edge [vi , v j ], two circles (vi , ri ) and
(v j , r j ) intersect at an acute angle �i j . The red circle is orthogonal to
the three circles at three vertices

φk : Sk → D. The surface is represented as a triangle mesh 553

. A discrete Riemannian metric is represented as the edge 554

length. For each face [vi , v j , vk], the edge lengths satisfy the 555

triangle inequality: li j + l jk > lki . The angles on each face is 556

determined by the edge lengths according to the cosine law. 557

The discrete Gaussian curvature Ki at a vertex vi ∈ Σ can 558

be computed as the angle deficit, 559

Ki =

{

2π −
∑

[vi ,v j ,vk ]∈Σ θ
jk
i , vi 	∈ ∂Σ

π −
∑

[vi ,v j ,vk ]∈Σ θ
jk
i , vi ∈ ∂Σ

(9) 560

where θ
jk
i represents the corner angle attached to vertex vi 561

in the face [vi , v j , vk], and ∂Σ represents the boundary of 562

the mesh. The Gauss–Bonnet theorem (Gu et al. 2004) states 563

that the total curvature is a topological invariant. It still holds 564

on meshes, as follows: 565

∑

vi ∈V

Ki = 2πχ(Σ), (10) 566

where χ(Σ) denotes the Euler characteristic number of Σ , 567

with χ = 2 − 2g − b = 2 − b (genus g = 0), boundary 568

number b > 0. 569

The discrete Ricci flow can be carried out through circle 570

packing metric, which is a discretization of conformality and 571

was introduced by Thurston (1980). As shown in Fig. 2, we 572

associate each vertex vi with a circle (vi , ri ), where ri is the 573

radius. Let ui = log ri be the discrete conformal factor. Let 574

[vi , v j ] be an edge, two circles (vi , ri ) and (v j , r j ) intersect 575

at an acute angle �i j . The edge length is given by 576

li j =

√

r2
i + r2

j + 2rir j cos �i j . (11) 577
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(a) input (front-back view) (b) circle domain (c) checker-board texture mapping

Fig. 3 Circular uniformization mapping for a brain cortical surface
with 3 boundaries. (a) shows the front and back views of the input 3D
surface which is a genus zero surface with 3 boundaries, γi , i = 1, 2, 3.
(b) shows the circle domains of conformal mapping results of the input
surface, where each 3D boundary is mapped to a circle, γ1 is mapped to

the exterior unit circle,γ2 andγ3 are mapped to interior circles. (c) shows
the front and back views of the checker-board texture mapping results
induced by the conformal mapping. The right angles of checker-board
are well preserved on the texture mapping results, which demonstrates
the angle preserving property of conformal mapping

The discrete Ricci flow is defined as follows:578

dui (t)

dt
= (K̄i − Ki ), (12)579

where K̄i is the user defined target curvature and Ki is the580

curvature induced by the current metric. The discrete Ricci581

flow has exactly the same form as the smooth Ricci flow,582

which conformally deforms the discrete metric according to583

the Gaussian curvature. The computation is based on circle584

packing metric Jin et al. (2008).585

Suppose Σ is a genus zero mesh with multiple bound-586

ary components. The uniformization conformal mapping587

φ : Σ → D, where D is the circle domain, can be computed588

using Ricci flow by setting the prescribed curvature as fol-589

lows: (a) The geodesic curvature on the exterior boundary is590

+1 everywhere; (b) the geodesic curvature on other bound-591

aries are negative constants; (c) the Gaussian curvature on592

interior points are zeros everywhere. Figure 3 shows an exam-593

ple. We use this method to compute conformal mapping, then594

get conformal module and diffeomorphism descriptor. The595

main challenge is that the target curvature is dynamically596

determined by the metric. The metric is evolving, so is the597

target curvature. The conformal mapping for a genus zero598

mesh with only one boundary components can be computed599

similarly. The detailed algorithm is reported in Wang et al.600

(2012).601

3.2 Computing Teichmüller Shape Descriptor602

After the computation of the conformal mapping, each con-603

nected component is mapped to a circle domain. We compute604

the Teichmüller shape descriptor as in Eq. 8.605

We define an order for all the non-intersecting closed606

curves on the surface S, {γ0, γ1, γ2, . . . , γb}, this induces607

an order for all the boundary components on each segment,608

{S0, S1, S2, . . . , Sb}. By removing all the segments from S,609

the left segment is denoted as S̄, which is a multiple con- 610

nected domain. 611

For the multiple connected segments (genus zero surfaces 612

with multiple boundaries), the circle domain is the unit disk 613

with multiple inner holes. Two circle domains are confor- 614

mally equivalent, if and only if they differ by a Möbius trans- 615

formation. Suppose the boundaries of a circle domain D are 616

∂ D = γ0 −γ1 −γ2 . . .−γb, each γk is a circle (ck, rk), where 617

ck denotes the center, rk denotes the radius. By the definition 618

for the conformal module of a circle domain, we normalize 619

each circle domain using a Möbius transformation, such that 620

γ0 becomes the unit exterior circle, c1 is at the origin, c2 is 621

on the imaginary axis. Then the normalized circle domain 622

is determined by its conformal module (Zeng et al. 2008), 623

which can be computed directly as in Eq. 5, 624

Mod(D) = {ck, k > 1} ∪ {r j , j > 0}. (13) 625

For those simply connected segments (genus zero surfaces 626

with only one boundary), the circle domain is the unit disk. 627

We compute its mass center and use a Möbius transformation 628

to map the center to the origin. Their conformal modules can 629

be omitted in the shape signature. 630

Each closed curve γk on the 3D surface becomes the 631

boundary components on two segments, both boundary com- 632

ponents are mapped to a circle under the uniformization 633

mapping. Then each boundary component gives a diffeo- 634

morphism of the unit circle to itself, defined as the mapping 635

between the radial angles on two circles, 636

Di f f (γk) = (θ1
k , θ2

k ), θ1
k , θ2

k ∈ [0, 2π ]. (14) 637

In order to keep consistency, we define a marker pk on the 638

boundary as the starting point, i.e., θ1
k (pk) = θ2

k (pk) = 0, to 639

compute the radial angles for the whole curve. 640
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(a)  superior view (b)  inferior view

Fig. 4 Illustration of function areas on the left half brain cortex

4 Experimental Results641

We demonstrate the efficiency and efficacy of our method by642

analyzing the human brain cortical surfaces of AD patients643

and healthy control subjects. The brain cortical surfaces are644

represented as triangular meshes. We implement the algo-645

rithm using generic C++ on windows XP platform, with Intel646

Xeon CPU 3.39GHz, 3.98G RAM. The numerical systems647

are solved using Matlab C++ library. In our experiments,648

it takes less than one minute to compute the Teichmüller649

shape descriptor, including the conformal modules and the650

diffeomorphism curves, for a brain hemisphere surface with651

3 contours with 100K triangles, as illustrated in Fig. 1. In the652

following, we explain data source, data processing, experi-653

mental setting and results, and performance comparison.654

4.1 Data Source655

Data used in the preparation of this article were obtained656

from the ADNI database (http://www.adni.loni.ucla.edu).657

The ADNI was launched in 2003 by the National Institute on658

Aging (NIA), the National Institute of Biomedical Imaging659

and Bioengineering (NIBIB), the Food and Drug Administra-660

tion (FDA), private pharmaceutical companies and non-profit661

organizations, as a $60 million, 5-year public-private part-662

nership. The primary goal of ADNI has been to test whether663

serial MRI, positron emission tomography, other biological664

markers, and clinical and neuropsychological assessment can665

be combined to measure the progression of mild cognitive666

impairment (MCI) and early AD. Determination of sensitive667

and specific markers of very early AD progression is intended 668

to aid researchers and clinicians to develop new treatments 669

and monitor their effectiveness, as well as lessen the time and 670

cost of clinical trials. 671

The Principal Investigator of this initiative is Michael W. 672

Weiner, MD, VA Medical Center and University of Califor- 673

nia at San Francisco. ADNI is the result of efforts of many 674

co-investigators from a broad range of academic institutions 675

and private corporations, and subjects have been recruited 676

from over 50 sites across the U.S. and Canada. The initial 677

goal of ADNI was to recruit 800 adults, ages 55–90, to partic- 678

ipate in the research, approximately 200 cognitively normal 679

older individuals to be followed for 3 years, 400 people with 680

MCI to be followed for 3 years and 200 people with early 681

AD to be followed for 2 years. For up-to-date information, 682

see http://www.adni-info.org. 683

4.2 Data Preprocessing 684

The structural MRI images were from the ADNI (Jack et al. 685

2007; Mueller et al. 2005). We tested our algorithm on 686

ADNI baseline image dataset. We used Freesurfer’s auto- 687

mated processing pipeline (Fischl et al. 1999; Dale et al. 688

1999) for automatic skull stripping, tissue classification, sur- 689

face extraction, and cortical and subcortical parcellations. It 690

also calculates volumes of individual grey matter parcella- 691

tions in mm3 and surface area in mm2, provides surface and 692

volume statistics for about 34 different cortical structures, 693

and computes geometric characteristics such as curvature, 694
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Fig. 5 Markers for computing curve diffeomorphisms. The marker for
a curve is selected as a point on the curve which is the intersection of
three functional areas. In our test, the markers for the applied three
curves are shown as the yellow points

curvedness, local foldedness for each of the parcellations695

(Desikan et al. 2006).696

According to the introduction in Desikan et al. (2006), we697

labeled different cortical surface functional areas in different698

colors. Figure 4 demonstrates different function area on a699

left half brain. In this work, we studied the correlations of700

different regions of brain cortical surface for group difference701

analysis.702

4.3 Experimental Setting703

We tested the discrimination ability of the proposed shape704

descriptor on a set of left brain hemispheres of 152 healthy705

control subjects and 169 AD patients. Each half brain sur-706

face mesh has 100K triangles. Among 34 cortical functional707

areas, we selected 3 regions of interest for study, such as708

superior frontal, fusiform and inferior parietal areas as shown709

in Fig. 1, correspondingly, represented by 3 closed curves,710

γ1, γ2, γ3, on the half brain surfaces. In this work, we used the711

left brain hemisphere surfaces for testing shape descriptors.712

These three closed curves segment a brain hemisphere sur-713

face to 4 patches; one topological annulus (called the base714

domain), three topological disks. The base domain with three715

boundaries is mapped to a circle domain, one boundary to the716

exterior unit circle, one boundary to the inner concentric cir-717

cle, the rest one to the inner circle centered at the imaginary718

axis. The conformal module of the base domain is computed719

as in Eq. 13. In the conformal mapping of each topological720

disk segment, the mass center is mapped to the origin of the721

unit disk. In addition, one marker on each curve is extracted as722

the starting point of computing radial angles. Here, we auto-723

matically selected the intersection point of three specified724

regions along the curve, as shown in Fig. 5. The diffeomor-725

phism descriptor for each curve, computed by Eq. 14, is plot-726

ted as a monotonic curve within the square [0, 2π ]×[0, 2π ].727

We sampled the curve to be 1, 000 points uniformly. Figure 6 728

illustrates the shape descriptors for 3 healthy control cortical 729

surfaces and 3 AD brain surfaces. 730

4.4 Numerical Analysis of Signatures among AD 731

and Healthy Control Subjects 732

We first analyzed the signature itself thoroughly through 733

the data obtained from the AD and healthy control subject 734

groups by considering their distribution and their differ- 735

ence between groups. The statistical difference of signatures 736

between groups are evaluated using t tests. 737

The proposed signature includes two parts, one is curve 738

diffeomorphism Di f f , the other is conformal module Mod, 739

i.e., ci and ri . Conformal modules describe surface patch 740

separately, while curve diffeomorphisms represent the cor- 741

relation between surface patches. The ci and ri as a whole 742

form the conformal module signature; it is invariant to scal- 743

ing, rotation, and translation, and is unique up to Möbius 744

transformations. Considering only ci or ri will loose much 745

geometric information of each surface patch; when applied 746

for AD classification, neither will get satisfying result, e.g., 747

much less than 63.60 % of (Mod) in Table 2 in our exper- 748

iment. For the completeness of signature and the coherence 749

to theory, we usually consider ci and ri as a whole, the 750

so-called conformal modules, and combine them with the 751

curve diffeomorphisms to form the Teichmüller signature in 752

a local-global view for a 3D surface shape. 753

In the following we illustrated the discriminative power 754

of signature parameters both separately and compositely by 755

the tests on two subject groups. 756

As prior AD research reported, the brain atrophy is an 757

important biomarker of AD. Our signature is sensitive to area 758

changes caused by atrophy. Figure 7 gives the box plots of the 759

components of conformal module Mod = (r2, y3, r3), which 760

shows the distribution of each descriptor for each group. The 761

AD group tends to have smaller radii ri and lower center yi 762

in the mapping domain; the 95 % confidence intervals for the 763

mean value is given in Table 1. Figure 6 illustrates the curve 764

plots of diffeomorphism signatures. The variations (L2 norm 765

between each pair) among red, green, blue curves reflect the 766

twisting in the gluing process. It is obvious that the variations 767

(twisting) of AD patients’ are greater than those of healthy 768

controls. All of these results verify that our new signature is 769

able to capture the brain cortical atrophy related to AD. 770

To demonstrate the completeness of our new shape sig- 771

nature, we computed the box plots of (Mod), (Di f f ), and 772

the proposed signature, (Mod, Di f f ), as shown in 8 for two 773

groups. The shape difference with the complete signature 774

(Mod, Di f f ) between two groups tends to be more statis- 775

tically significant with p-value = 0.0007 < 0.05 than the 776

signature component (Mod) or (Di f f ). The results perfectly 777

matched the theoretical expectation. 778
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Fig. 6 Teichmüller shape descriptor (Mod, Di f f ) of 3 healthy control (CTL) brain cortexes and 3 Alzheimer’s disease (AD) brain cortexes, both
of which are randomly selected from the database. The left half brain with 3 contours is considered

Fig. 7 Box plots for the distribution of components of conformal module signatures for healthy control subjects and AD patients. (a–c) describe
the box plots and p-values for (r2), (y3), and (r3), respectively
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4.5 Classification among AD and Healthy Control Subjects779

For our classification purpose, we set 80 % of each cat-780

egory to be training samples, the rest 20 % testing sam-781

ples. In order to obtain the fair results, we randomly782

selected the training set each time and computed the average783

recognition rate over 1,000 times. We applied the support784

vector machine (SVM) (http://www.csie.ntu.edu.tw/~cjlin/785

libsvm/) as classifier, where the linear kernel function was786

employed, and we used C-SVM and chose C = 5 by787

running cross validation. Table 2 shows that the 95 per-788

cent confidence interval for the average recognition rate is789

91.38 ± 0.55 %, by the signature (Mod, Di f f ) under the790

above experimental setting. We also tested the signatures,791

diffeomorphism (Di f f ) and conformal module (Mod),792

separately. The experimental results demonstrate that the793

recognition rates are much less than the complete signature794

(Mod, Di f f ), which is coherent to the statistical signifi-795

Table 1 The 95 percent confidence intervals for the average values of
conformal module components

Sig. r2 y3 r3

CTL 0.0454 ± 0.0006 0.1477 ± 0.0049 0.0641 ± 0.0022

AD 0.0441 ± 0.0007 0.1404 ± 0.0019 0.0609 ± 0.0009

Table 2 Average recognition accuracy rates (%) for applying different
signatures among 152 healthy control subjects versus 169 AD patients,
where 80 % of the dataset are randomly selected for training and the
rest 20 % for testing

Sig. Mod, Di f f Di f f Mod V ol Area

Rate % 91.38 85.71 63.60 68.20 70.23

±0.55 ±0.68 ±0.60 ±0.57 ±0.73

The average recognition rate interval with 95 percent confidence is com-
puted over 1,000 times. Linear SVM method is used for classification

Fig. 9 Histogram of volumes for 152 healthy control (CTL) subjects
and 169 Alzheimer’s disease (AD) patients

cance analysis as shown in Fig. 8. That satisfies the fact 796

that (Di f f ) describes the more detailed correlation of each 797

patch to the base domain through the closed curves, while 798

(Mod) captures the global shape information only through 799

the base domain; both together are required to recover the 800

closed curves on 3D surface. 801

4.5.1 Comparison with Two Simple Brain Measurements 802

For a simple comparison, we computed the volume for the 803

left brain cortex as a signature, (V ol). The 95 percent con- 804

fidence interval for the average recognition rate of volume 805

using linear SVM in the above setting is 68.20±0.57 %. The 806

histogram for volume illustrated in Fig. 9 intuitively demon- 807

strates that the volume signature cannot differentiate the AD 808

and healthy control groups accurately. We also computed 809

the surface areas for the base domain and 3 regions as 810

signature (Area) = (A0, A1, A2, A3); the 95 percent con- 811

fidence interval for the average recognition rate is 70.23 ± 812

0.73 %. Although these two statistics are not popular shape 813

descriptors for AD in the literature and a more careful and 814

thorough study such as Cuingnet et al. (2011) and Chincar- 815

ini et al. (2011) is necessary, the results helped illustrate our 816

Fig. 8 Boxplots for the distribution of components of signatures for healthy control subjects and AD patients. (a–c) describe the box plots and
p-values for signature components (Mod), (Di f f ), and the complete signature (Mod, Di f f ), respectively
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testing data nature and show the potential of our proposed817

shape signature.818

4.6 Discussion819

4.6.1 Stability to Geometric Noise820

The proposed work is based on surface Ricci flow research.821

Computing conformal module is equivalent to solving an822

elliptic PDE on surfaces. According to geometric elliptic823

PDE theory, the solution is smoothly depends on the geom-824

etry and boundary conditions. In practice, the computation825

process and the solution are quite stable and robust to geo-826

metric noises.827

4.6.2 Functional Area Selection828

Patients with AD often experience some functional deficits,829

such as visual deficits, as one of their earliest complaints.830

Based on this fact, we expect that the AD progress will change831

the characteristics of some functional areas, and some bio-832

markers related to AD will emerge. Therefore, we developed833

the novel and practical tool to verify the correlation between834

the functional area morphometry and the AD progress.835

A full and thorough study of which areas are most related836

to AD is not the main focus of the current work. We chose837

the areas mainly based on previous researches. For exam-838

ple, Guo et al. (2010) and Hua et al. (2010) have indi-839

cated that the superior temporal area and precuneus and840

posterior cingulate areas haves significant atrophy in AD841

group. In Shi et al. (2011), morphometry changes of ten842

functional areas were studied for their relationship to AD.843

In our experiments, we selected three areas from the ten844

areas, fusiform, superior frontal and inferior parietal, and845

tested our method on these areas. However, our framework846

is quite general and provides a convenient tool for future847

research to continue searching other AD-related functional848

areas.849

4.6.3 Biological Meaning of Teichmüller Signature850

For surface-based AD research, the state-of-the-art work has851

used cortical thickness as the measurement Thompson et852

al. (2003); Cuingnet et al. (2011). However, recent research853

Winkler et al. (2010) indicated that the commonly used corti-854

cal thickness and cortical area measurements are genetically855

and phenotypically independent. The biological meaning of856

the proposed shape signature is closely related to brain atro-857

phy so it is more related to cortical area changes.858

The proposed signature reflects both local and global859

geometries and the intrinsic relations among different func-860

tional areas. The relation between the signature and the861

shapes of the areas on cortical surface is highly non-linear862

and complicated. The atrophy on one functional area will 863

distort the local geometry therefore change the relation to 864

other areas; this relation can be captured by our signature as 865

well. Intuitively, the diffeomorphisms of the circles reflect 866

the gluing pattern among functional areas. The brain atrophy 867

will twist the gluing pattern, and introduces more torsion. 868

For example, in Fig. 6, the variations (twisting) among red, 869

green, blue curves of AD patients’ are greater than those of 870

healthy controls. The classification performance with area 871

measurement in Table 2 demonstrates that the AD is related 872

to the functional area changes, which are usually caused by 873

brain atrophy. Therefore, the proposed signature is closely 874

related to brain atrophy. 875

Our method provides a unique and intrinsic shape sig- 876

nature to study brain morphometry changes caused by brain 877

atrophy. It studies the sensitivity and reproducibility of shape 878

features computed in the entire brain surface domain. The 879

gained insights help improve our understanding to AD related 880

pathology and discover the precise etiology of the grey matter 881

changes. The preliminary results demonstrated that the shape 882

signature provides a reasonably good discriminant power for 883

AD biomarker research. 884

The method can be equally applied to other regions as 885

well. In future, we may study and compare other functional 886

areas in the medial temporal lobe. 887

4.6.4 Comparison on AD Detection 888

Cuingnet et al. (2011) did a thorough study and comparison 889

of 10 methods for AD classification on ADNI; Chincarini et 890

al. (2011) proposed a feature vector which consists of vol- 891

umes of 9 ROI measurements. Both papers reported impres- 892

sive results. Although using the same ADNI dataset, a fair 893

and direct comparison between our method and their meth- 894

ods is difficult to perform. Most existing methods focus on 895

the local geometries, whereas our method emphasizes both 896

the local geometries of regions and the relations among them 897

(how to glue them). Our statistical results show that the pro- 898

posed shape feature is promising as AD shape biomarkers. 899

Whether or not this approach provides more relevant corre- 900

spondences than those afforded by other measurements (grey 901

matter thickness, ROI such as hippocampal volume) requires 902

careful validation for each application. More importantly, we 903

anticipate that our conformal structure based features may 904

provide new measurements on structural MRI and will be 905

complementary to these other features. We plan to combine 906

them in future for AD classification. If the combined shape 907

features help improve classification accuracy, then it would 908

support the use of conformal structure based measurements 909

such as Teichmüller shape descriptors in AD research. 910
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4.6.5 Future Exploration911

For brain cortex morphometry analysis, the current existing912

methods Cuingnet et al. (2011) mainly rely on grey matter913

thickness. To the best of our knowledge, this is the first work914

that features are defined on certain functional area bound-915

aries. From our experience and the earlier work Winkler et al.916

(2010), our hypothesis is that our new feature would be com-917

plementary to thickness measurement. Another interesting918

question is whether our new shape signature can improve919

classification on MCI-AD or MCI-healthy control. We plan920

to continue our exploration further on these two topics in our921

future work.922

5 Conclusions and Future Work923

In this paper, we propose a novel method that computes924

the global shape signatures on specified functional areas on925

brain cortical surfaces in Teichmüller space. We applied it to926

study the shape difference of cortical surfaces between AD927

and healthy control groups. The method is general, robust,928

and effective; it has great potential to be employed to gen-929

eral brain morphometry study. In the future, we will further930

explore and validate other applications of this global corre-931

lation shape signature in neuroimaging and shape analysis932

research.933
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6 Appendix: Proof of Theorem 4 968

Proof See Fig. 10. In the left frame, a family of planar 969

smooth curves Ŵ = {γ0, . . . , γ5} divide the plane to seg- 970

ments {
0,
1, . . . , 
6}, where 
0 contains the ∞ point. 971

We represent the segments and the curves as a tree in the sec- 972

ond frame, where each node represents a segment 
k , each 973

link represents a curve γi . If 
 j is included by 
i , and 
i 974

and 
 j shares a curve γk , then the link γk in the tree connects 975


 j to 
i , denoted as γk : 
i → 
 j . In the third frame, each 976

segment 
k is mapped conformally to a circle domain Dk 977

by �k . The signature for each closed curve γk is computed 978

fi j = �i ◦ �−1
j |γk

, where γk : 
i → 
 j in the tree. In the 979

last frame, we construct a Riemann sphere by gluing circle 980

domains Dk’s using fi j ’s in the following way. The gluing 981

process is of bottom up. We first glue the leaf nodes to their 982

fathers. Let γk : Di → D j , D j be a leaf of the tree. For each 983

point z = reiθ in D j , the extension map is 984

Gi j (reiθ ) = re fi j (θ). (15) 985

We denote the image of D j under Gi j as S j . Then we 986

glue S j with Di . By repeating this gluing procedure bot- 987

tom up, we glue all leafs to their fathers. Then we prune all 988

leaves from the tree, and glue all the leaves of the new tree, 989

and prune again. By repeating this procedure, eventually, we 990

get a tree with only the root node, then we get a Riemann 991

sphere, denoted as S. Each circle domain Dk is mapped to 992

a segment Sk in the last frame, by a sequence of extension 993

maps. Suppose Dk is a circle domain, a path from the root 994

D0 to Dk is {i0 = 0, i1, i2, . . . , in = k}, then the map from 995

Gk : Dk → Sk is given by: 996

Gk = Gi0i1 ◦ Gi1i2 ◦ . . . ◦ Gin−1in . (16) 997

Note that, G0 is identity. Then the Beltrami coefficient of 998

G−1
k : Sk → Dk can be directly computed, denoted as µk : 999

Sk → C. The composition �k ◦ G−1
k : Sk → 
k maps 1000

Sk to 
k , because �k is conformal, therefore the Beltrami 1001

coefficient of �k ◦ G−1
k equals to µk . 1002

We want to find a map from the Riemann sphere S to 1003

the original Riemann sphere 
,� : S → 
. The Beltrami- 1004

coefficient µ : S → C is the union of µk’s each segments: 1005

µ(z) = µk(z),∀z ∈ Sk . The solution exists and is unique up 1006

to a Möbius transformation according to Quasi-conformal 1007

Mapping theorem Gardiner and Lakic (2000). ⊓⊔ 1008

Note that, the discrete computational method is more 1009

direct without explicitly solving the Beltrami equation. From 1010

the Beltrami coefficient µ, one can deform the conformal 1011

123

Journal: 11263 MS: 0586 TYPESET DISK LE CP Disp.:2012/10/24 Pages: 16 Layout: Large

A
u

th
o

r
 P

r
o

o
f

http://www.fnih.org
http://www.fnih.org
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


un
co

rr
ec

te
d

pr
oo

f

Int J Comput Vis

Fig. 10 Proof for the main theorem, the signature uniquely determines the family of closed curves unique up to a Möbius transformation

structure of Sk to that of 
k , under the conformal structures1012

of 
k,� : S → 
 becomes a conformal mapping. The con-1013

formal structure of 
k is equivalent to that of Dk , therefore,1014

one can use the conformal structure of Dk directly. In discrete1015

case, the conformal structure is represented as the angle struc-1016

ture. Therefore in our algorithm, we copy the angle structures1017

of Dk’s to S, and compute the conformal map � directly.1018
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