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Introduction
Alzheimer's disease (AD) is the most common form of cognitive disability in
old people with the main feature as cortical atrophy. A key research question is
how to quantitatively evaluate and compare grey matter thickness. Here we
propose a heat kernel based method to estimate grey matter thickness. After
constructing the cortical tetrahedral mesh, we adopt the heat kernel [1] based
on volumetric Laplace-Beltrami operator proposed in our prior work [2] to
calculate the cortical thickness.

Methods
First we fill the MRI space with the cubic background voxels with binvox
software. Secondly, the cubic voxel containing the boundary surface and the
internal voxel are split into the tetrahedrons using smoothing modules in
software package CGAL [3]. The obtained tetrahedral mesh needs to be
corrected to improve the quality and the smoothness based on harmonic
function minimization [4]. Fig.1 shows an example of generated tetrahedral
meshes and their tetrahedral element qualities. The figures from left to the
right are the generated tetrahedral mesh (154,908 tetrahedrons) based on our
method, the cross-section cut through the mesh according to y-axis, the
dihedral angle histograms (the value ranges of the dihedral angle is within
[11.92, 163.02]) and the tetrahedral element quality coefficients respectively.
Then we define the tetrahedral mesh of the cortex as the finite solution space.
After adding the contribution of the local stiffness matrix to global stiffness
matrix, we can construct the discrete volumetric Laplace-Beltrami operator
under the Dirichlet boundary condition [2]. Then we compute the heat kernel
from the specific point on an isothermal surface to a different point on the
next isothermal surface. According to the theory of the spectral analysis [5],
the connection direction of the maximum transition probability is the direction
of the temperature gradient. By repeating this process, a streamline of the
cortex will be obtained by finding out the maximum heat transition probability
between the isothermal surfaces. And the cortical thickness is estimated as the
total length of the streamline. Our motivation is illustrated in Fig. 2. The heat
diffusion is illustrated with spectrum (Fig.2 (a)) and the diffusion distance is
illustrated in Fig. 2 (b).

Results
Our dataset consists of 51 patients of AD, 45 patients of mild cognitive
impairment (MCI) and 55 healthy controls. For comparison, the thicknesses
estimated by our method and FreeSurfer [6] were linearly interpolated to the
same surface template. In each case, the covariate (group membership) was
permuted 5000 times and a null distribution was developed for the area of the
average surface with group-difference statistics above the pre-defined
threshold in the significance p-maps. Fig.3 shows the p-maps of group
difference detected between AD and control ((a) and (d)), AD and MCI ((b)
and (e)), control and MCI groups ((c) and (f)) and the significant level at each
surface template point as 0.05. And (a), (b), (c) are results of FreeSurfer
method, (d), (e), (f) are the results of our method. The non-blue color areas
denote the statistically significant difference areas between two groups. All
group difference p-maps were corrected for multiple comparisons using the
widely-used false discovery rate method (FDR). Fig.4 (a)-(c) are the
cumulative distribution function (CDF) plots showing the uncorrected p-
values. As expected, we found very strong thickness differences between AD
and control groups (q-value: 0.0385 with heat kernel method (Fig.3 (d)) and
0.0281 with FreeSurfer software (Fig.3 (a)), strong thickness differences
between MCI and control groups (q-value: 0.0289 with heat kernel method
(Fig.3 (e)) and 0.0133 with FreeSurfer software (Fig.3 (b)) and relatively less
thickness differences between AD and MCI groups (q-value: 0.0247 with heat
kernel method (Fig.3 (f)) and 0.0101 with FreeSurfer software (Fig.3 (c)).

Conclusions:
we present a heat kernel based thickness estimation algorithm which may
improve the computational efficiency and accuracy for in vivo MR image
cortical thickness estimation.
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Fig.1 An example of generated tetrahedral meshes and their tetrahedral element qualities.

Fig.2 Illustration of heat diffusion on cortical structure

Fig.3  Statistical p-map results with the thickness measures of heat kernel diffusion (d-f) 
and FreeSurfer (a-c) show group differences.

Fig.4 The cumulative distributions of p-values comparison for difference detected
between the different groups
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