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Abstract—An effective presymptomatic diagnosis and treat-
ment of Alzheimer’s disease (AD) would have enormous public
health benefits. Sparse coding (SC) has shown strong potential
for longitudinal brain image analysis in preclinical AD research.
However, the traditional SC computation is time-consuming and
does not explore the feature correlations that are consistent
over the time. In addition, longitudinal brain image cohorts
usually contain incomplete image data and clinical labels. To
address these challenges, we propose a novel two-stage Multi-
Resemblance Multi-Target Low-Rank Coding (MMLC) method,
which encourages that sparse codes of neighboring longitudinal
time points are resemblant to each other, favors sparse code
low-rankness to reduce the computational cost and is resilient
to both source and target data incompleteness. In stage one,
we propose an online multi-resemblant low-rank SC method to
utilize the common and task-specific dictionaries in different time
points to immune to incomplete source data and capture the
longitudinal correlation. In stage two, supported by a rigorous
theoretical analysis, we develop a multi-target learning method to
address the missing clinical label issue. To solve such a multi-task
low-rank sparse optimization problem, we propose multi-task
stochastic coordinate coding with a sequence of closed-form up-
date steps which reduces the computational costs guaranteed by
a theoretical convergence proof. We apply MMLC on a publicly
available neuroimaging cohort to predict two clinical measures
and compare it with six other methods. Our experimental results
show our proposed method achieves superior results on both
computational efficiency and predictive accuracy and has great
potential to assist the AD prevention.

Index Terms—Multi-task, Longitudinal incomplete data,
Sparse coding, Low-rank, Multi-resemblance

I. INTRODUCTION

ALZHEIMER’S disease (AD) [1] is known as the most
common type of dementia. It is a slow progressive

neurodegenerative disorder leading to a loss of memory
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and reduction of cognitive function. Many clinical/cognitive
measures such as Mini Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Scale cognitive subscale
(ADAS-Cog) have been designed to evaluate a subject’s cog-
nitive decline. It is crucial to predict AD-related cognitive
decline in its presymptomatic stage so an early intervention
or prevention becomes possible.

In AD research, cognitive concerns correlate with struc-
tural magnetic resonance imaging (sMRI)-based measures
of atrophy in several structural measures, including whole-
brain, entorhinal cortex, hippocampus and temporal lobe vol-
umes. [2] These findings support their potential usage as
predictors of disease progression. Among various sMRI-based
measures, hippocampal morphometry was one of the most
popular measures for assessing disease burden, progression
and effects of treatments [3], [4], [2], [5], [6]. Therefore,
surface-based hippocampal morphometry has been studied
intensively for cognitive decline research, e.g., [7], [8], [9],
[10], [11], [12], including our work, e.g., [13], [14], [15],
[16], [17]. However, a notoriously challenging problem in
neuroimaging arises from the fact that the imaging feature
dimensionality is intrinsically high while only a small number
of samples are available. Recent work shows that sparse
coding (SC) [18], [19], [20], [21] allows us to represent the
primary image features as a small set of sparse coefficients
and boosts their prediction power. However, the optimization
of such problems is extremely time-consuming and the local
features with similar descriptors lead to inconsistent sparse
codes which may downgrade the statistical power on AD
prediction. In addition, modeling sequential longitudinal data
by an unsupervised learning approach such as SC is even more
challenging because it is hard to extract correlation patterns
from different time points.

Many multi-task researches aim to excavate the correlations
among data from different modalities or time points. Wang
et al. [22] propose a multi-task sparse regression and feature
selection method to jointly analyze the clinical and neu-
roimaging data in prediction of the memory performance [23].
Zhang and Shen [24] exploit a `2,1-norm based group sparse
regression method to select features that can be used to jointly
predict two clinical statuses and represent the different clinical
status. A multi-task sparse learning framework is proposed to
integrate multiple incomplete data sources in [25], e.g. there
are blockwise sMRI images missing in some time points.
Our prior work [20] proposes a novel unsupervised multi-task
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Fig. 1. The pipeline of our Multi-Resemblance Multi-Target Low-Rank Coding (MMLC) framework.

SC method that learns the different tasks simultaneously and
utilizes shared and task-specific dictionaries to encode both
consistent and individual imaging features for longitudinal
image data analysis.

Although the multi-task SC may model sequential longitudi-
nal data, the conventional SC method remains a computational
challenge. We therefore consider the low-rankness in the
sparse codes computation that favors both feature sparsity and
learning efficiency. There are at least two advantages of the
low-rank constraint on the sparse codes at each time point.
Firstly, low-rankness technique was originally proposed to
reduce noise and improve the signal-to-noise ratio (SNR) [26],
[27]. Adding the low-rank constraint on the learned sparse
codes at each time point (Eq. 2), we aim to exploit the
correlations between the sparse codes. Similar to our recent
work [17], it will reduce the noises in surface-based hippocam-
pal morphometry features and therefore improve the statistical
power. Secondly, the low-rankness will significantly improve
the computational efficiency [28], [29], [30]. Meanwhile, our
prior work [20] simply concatenates the longitudinal data
while neglecting the intrinsic resemblance of the longitudinal
data. It ignores the fact that the neighborhood features not
only have resemblant codebooks but also have resemblant
representations. Therefore, there is a huge sacrifice of valuable
neighborhood time points information from the longitudinal
data. To remedy this problem, here we exploit the resemblance
among features lying in the neighboring time points and
seek an accurate joint representation of these local features.
We design a resemblance penalty term which may make the
coefficients of multiple neighboring time points resemblant,
ensuring higher correlations between features of nearby time
points than those of distant time points.

The unsupervised multi-task learning overcomes the incom-
plete source data problem to obtain sparse features, but the
missing clinical label problem is also ubiquitous. It results
in multi-task target values after sparse features are extracted.
A forthright method is to perform linear regression at each

task and determine weighted matrix separately. However,
such methods treat all tasks independently, ignore the useful
information reserved in the changes among different tasks
and cause strong bias to predict multiple target outputs.
Another simple strategy is to remove all patients with missing
target values. It, however, significantly reduces the number of
samples. Zhou et al. [31] consider multi-task with missing
target values in the training process, but the algorithm did
not incorporate multiple-source data. For a complete solution,
we therefore consider both multiple task-incomplete data and
multiple outputs with missing target values in this work for
exploring the disease prediction problem.

In this paper, we propose a novel two-stage framework,
termed Multi-Resemblance Multi-Target Low-rank Coding
(MMLC) algorithm. In stage one, we utilize shared and task-
specific dictionaries to encode both consistent and changing
imaging features along longitudinal time points and mine
the correlations among a small number of features to obtain
more consistent sparse codes than learning each time point
separately. Meanwhile, we encourage using only a few sparse
codebook representations to represent neighboring resemblant
features to improve the smoothness of prediction over the
longitudinal neighboring time points and maintain a low
computational cost. In stage two, we deal with missing clinical
labels on the target side, thus, we consider both input and
target sides’ incomplete data in the longitudinal learning
process. MMLC is computed by solving an online low-rank
dictionary learning optimization problem, which comprises
a sequence of closed-form update steps. They are achieved
by the Inexact Augmented Lagrange Multiplier (IALM) that
guarantees a fast convergence. Our extensive experimental
results on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) I cohort [1] show the proposed MMLC achieves
significantly faster running speed and lower estimation errors,
as well as reasonable smooth prediction scores when compared
with six other algorithms, which demonstrates great potential
benefits for the medical imaging research community.
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Our prior work [20] establishes the multi-source multi-
target dictionary learning framework. The current extended
journal manuscript has four major expansions over its con-
ference version, including 1) adding low-rank technique to
model feature similarity and reduce the dictionary learning
computational cost, 2) enforcing sparse codes of neighboring
time point longitudinal features to be resemblant to each other,
3) providing a detailed sequence of closed-form updating
steps and theoretical guarantee of fast convergence, and 4)
expanding the experiments to provide additional insights into
the benefit of our new method.

II. METHODS

The pipeline of MMLC is illustrated in Figure 1. We will
detail each step in this section. The pipeline source code is
publicly available at http://gsl.lab.asu.edu/software/MMLC.

A. Problem definition and Preliminaries

Given subjects from T time points: {X1, · · · ,XT }, our goal
is to learn a set of sparse codes {S1, · · · ,ST } for each time
point. The sparse code St ∈ Rmt×nt is a sparse representation
of the original input Xt ∈ Rp×nt and t ∈ {1, ..., T}, where p
is the feature dimension of each sample of xti, i = 1, ..., nt and
nt is the number of samples for Xt and mt is the dimension
of each sparse code in St.

When employing the conventional single-task sparse coding
(SC) to learn the sparse codes St by Xt individually, we obtain
a set of dictionary {D1, · · · ,DT } without correlation between
each learnt dictionary. The objective function of single-task SC
for time point t will be

min
Dt,St

1

2
||Xt −DtSt||2F + λ1||St||1,1, s.t.Dt ∈ Ψt, (1)

where Ψt = {Dt ∈ Rp×mt : ∀j ∈ 1, ...,mt, ||Dt
j ||2 ≤ 1} and

λ1 is an non-negative parameter. Ψt is to prevent an arbitrary
scaling of the sparse code, each column of Dt is restricted to
be in a unit ball, i.e., ||Dt

j ||2 ≤ 1. The details of SC can be
summarized into Algorithm 1.

Algorithm 1: Single-Task Sparse Coding (STSC)
Input : Xt, t = 1, · · · , T.
Output: Dt and St, t = 1, · · · , T .

1 begin
2 for k = 1→ κ do
3 for t = 1→ T do
4 Get an input matrix Xt;
5 Update St by cyclic coordinate descent

(CCD) [32];
6 Update Dt by stochastic gradient descent

(SGD) [33];
7 Normalize each column of dictionary Dt .

B. MMLC Stage-I: Multi-Resemblance Low-Rank SC Stage

However, single-task SC (Eq. (1)) only uses one dictionary
D which is not sufficient to model the variations among
subjects from different time points. To address this problem,
we integrate the idea of multi-task learning [34] into the SC
method. Different from previous works, we propose to learn
the intrinsic low-dimensional space of the original data by
simultaneously conducting the dictionary learning and sparse
feature learning processes. The objective function of our
proposed multi-task low-rank SC framework is as follows:

min
Dt∈Ψt,St

T∑
t=1

(
1

2
||Xt−DtSt||2F+λ1||St||1,1), s.t. rank(St) ≤ lt,

(2)
where the rank lt-estimate of St denotes as rank(St) ≤ lt.

However, Eq. (2) dose not consider the correlation between
the samples among the multiple time points. Therefore, we
proposed to use common and task-specific dictionary struc-
ture to learn dictionary atoms across multiple time points to
capture the correlations. For each input matrix Xt, we learn
the dictionary atoms Dt which are composed of two parts:
Dt = [D̂t, D̄t] where D̂t ∈ Rp×m̂t , D̄t ∈ Rp×m̄t and
m̂ + m̄t = mt. D̂ is the common dictionary atoms among
different tasks and D̂ = D̂1 = · · · = D̂T while D̄t is different
from each other and only learned from the corresponding task
input matrix Xt. The objective function can be reformulated
as follows:

min
Dt∈Ψt,St

T∑
t=1

(
1

2
||Xt− [D̂, D̄t]St||2F +λ1||St||1,1 +λ2||St||∗).

(3)
where λ1 and λ2 quantify the tradeoff between sparsity and
low-rankness in the feature learning process. λ2 = 0 is the
special case of Eq. (3), the problem (3) will become sparse
coding problem. Specifically, the objective function Eq. (2) is a
non-convex problem due to the non-convexity of the rank(S).
We use the convex relaxation technique [35] in Eq. (3), the
trace norm (nuclear norm) has been known as the convex
envelop of the function of the rank ||S||∗ ≤ rank(S),∀S ∈
C = {S|||S||2 ≤ 1}.

The longitudinal data of the time points close to the baseline
MR images has higher resemblance than those of time points
distant to the baseline MR images (e.g., 3-month and 6-month
MR images are more resemblant to baseline images than those
of 12-month MR images). We further use a Gaussian similarity
kernel to emphasize such inherent resemblance knowledge
between two different time points:

wp,q = exp(
−||p− q||

2σ2
), (4)

where σ is empirically set as 1, and p and q donate time point
p and time point q.

The function wp,q is used to penalize the distance between
two time points so that it emphasizes the inherent resemblance,
i.e., the nearby time points induce high resemblant sparse
codes S and distant time points induce high disparities. The
final objective function of MMLC stage-I multi-resemblant
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Fig. 2. Illustration of the learning process of MMLC on ADNI-I cohort from multiple different time points to predict multiple future time points clinical
scores. In the figure, there are three input feature spaces from baseline, 6-month and 12-month as {X1, X2, X3}. We learn the dictionaries and sparse codes
in stage 1. The dictionaries have two components (shared dictionary D̂t and task-specific dictionary D̄t corresponding to specific input Xt). The sparse
codes are low-rankness and have different resemblance between each others (e.g., S1, S2 and S2, S3 share higher resemblance, i.e., more common colors,
than S1, S3). In stage 2, we use multi-target learning to predict multiple target clinical scores while dealing with missing label problem.

low-rank SC stage can be formalized as follows:

min
Dt∈Ψt,St

T∑
t=1

(
1

2
||Xt − [D̂, D̄t]St||2F + λ1||St||1,1 + λ2||St||∗)

+ λ3

T−1∑
p=1

T∑
q=p+1

wp,q||Sp − Sq||22.

(5)

where λ3 is a non-negative regularization parameter. We will
discuss how to optimize Eq. (5) in Sec. III.

Fig. 2 illustrates the learning process of MMLC with
subjects of ADNI from three different time points which
represents as X1, X2 and X3, respectively. Through the
multi-resemblant low-rank SC stage (Stage 1), we obtain the
dictionary and sparse codes for subjects from each time point
t: Dt and St. A dictionary Dt is composed by a shared
dictionary D̂t across all tasks and a task-specific part D̄t

only corresponding with the specific task Xt. As a result, the
sparse codes are low-rankness and have different resemblance
between each others (e.g., S1, S2 and S2, S3 share higher
resemblance, i.e., more common colors, than S1, S3).

C. MMLC Stage-II: Multi-Target Learning with Missing La-
bels

We measure the cognitive scores of patients at multiple time
points in the longitudinal AD study. We formulate the predic-
tion of clinical scores at multiple future time points simul-
taneously rather than considering the prediction of cognitive
scores as a set of single time point regression since the intrinsic
temporal smoothness information among different tasks can be
incorporated into the model as the prior knowledge. However,
there are many missing clinical scores at certain time points,
especially for later time point (36 and 48 months) ADNI data.
It will result in a huge information loss if we throw away
these data in the prediction stage. It is necessary to incorporate
the missing target values with multi-task regression to predict
clinical scores [31], [36], [37].

Algorithm 2: Multi-Resemblance Multi-Target Low-
rank Coding (MMLC)
Input : Samples Xt and corresponding labels Yt

from different time points, epoches κ,
λ1, λ2, λ3, µ1, µ2, γ, φ and D̂ = D0.

Output: The models for different time points Wt.
1 begin
2 Stage I: Multi-Resemblance Low-Rank SC Stage
3 for k = 1→ κ do
4 for t = 1→ T do
5 For each input matrix Xt;
6 Update St,(k) via Alg. 3;
7 Update ||St,(k)||1,1 and ||St,(k)||∗ by

Eq. (14) and Eq. (15);
8 Update D̂(k): D̂(k) = D0 (D0 = D̂(k−1));
9 Update the D̂(k) and D̄t,(k) via Alg. 4;

10 Calculate wp,q function by Eq (4);
11 Update St,(k) by Eq. (20);
12 D0 = D̂(k);

13 Obtain the learnt sparse codes St, t = 1, · · · , T .
14 Stage II: Multi-Target Regression Stage
15 for t = 1 to T do
16 Given Yt

j ∈ Yt, for the jth model wt
j ∈Wt:

wt
j = (S̃tS̃tT + ξI)−1S̃tỸt

j

In this paper, we use a matrix Θ ∈ Rnt×mt to indicate
missing target values, where Θi,j = 0 if the target value of
label Yt

i,j is missing and Θi,j = 1 otherwise. Given the sparse
codes {S1, ...,ST } and corresponding labels {Y1, ...,YT }
from different times where Yt ∈ Rmt×nt , we formulate the
multi-target learning stage with missing target values as:

min
W1,··· ,WT

T∑
t=1

||Θ(Yt −WtSt)||2F + ξ
T∑
t=1

||Wt||2F . (6)
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Algorithm 3: Updating sparse codes s
t,(k+1)
i

Input : Image patch xti, dictionaries D̂t,(k) and
D̄t,(k), sparse codes s

t,(k)
i and index set It,(k)

i .
Output: s

t,(k+1)
i and It,(k+1)

i .
1 begin
2 for j = 1 to pt do
3 Update s

t,(k+1)
i,j by Eq. (8) and Eq. (9).

4 if s
t,(k+1)
i,j 6= 0 then

5 Put j into the index set It,(k+1)
i .

6 for j = 1 to Q do
7 for l ∈ It,(k+1)

i do
8 Update l by Eq. (11) and Eq. (12).

Although Eq. (6) is associated with missing values on the
labels, we show that it has a close form and present the theo-
retical analysis of MMLC stage-II in Supplemental Material.

III. OPTIMIZATION ANALYSIS

In this section, we explain the updating procedures for
MMLC. Eq. (5) is a non-convex problem. However, it will
become a convex problem when we fix either D or S. When
the sparse codes S is fixed, solving dictionary D̂ and D̄ can be
solved as a quadratically constrained quadratic programming
(QCQP) problem [35]. At the end of each update in MMLC
stage-I, we update the shared dictionary Φ: Φ = D̂t and
let D̂1 = · · · = D̂t. When the dictionary D is fixed,
solving each sparse code si can be view as a sparse group
Lasso problem [38]. We alternately update Dt and St for
k = κ epoches and summarize the optimization details into
Algorithm 2.

In Algorithm 2, for each image patch xti, we learn the i-
th sparse code s

t,(k+1)
i from st by several steps of cyclic

coordinate descent (CCD) [32]. We then use learnt sparse
codes s

t,(k+1)
i to update the dictionary D̂t,(k+1) and D̄t,(k+1)

by one step stochastic gradient descent (SGD) [33]. Since
s
t,(k+1)
i is very sparse, we use the index set I

t,(k+1)
i to record

the location of non-zero entries in s
t,(k+1)
i to accelerate the

update of sparse codes and dictionaries. Φ is updated by the
end of the k-th iteration to ensure D̂t,(k+1) is the same part
among all the dictionaries.

A. Updating the low-rankness sparse codes

After we pick an image patch xti from the sample Xt at
the time point t, we fix the dictionary D and only consider
updating the first sparse codes term S. The optimization
problem becomes the following form:

min
St

T∑
t=1

(
1

2
||Xt − [D̂, D̄t]St||2F + λ1||St||1,1) (7)

Coordinate descent [32] is known as one of the state-of-the-art
methods for solving this Lasso problem [39]. In this study, we
perform the CCD to optimize Eq. (7). Empirically, the iteration
may take thousands of steps to converge, which is time-
consuming in the optimization process of dictionary learning.

However, we observe that after a few steps, the support of
the coordinates, i.e., the locations of the non-zero entries in
sti, becomes very stable, usually after less than ten steps. In
this study, we perform P steps CCD to generate the non-zero
index set Ik+1

t , recording the non-zero entry of s
t,(k+1)
i . Then

we perform Q steps CCD to update the sparse codes only
on the non-zero entries of s

t,(k+1)
i , accelerating the learning

process significantly. Stochastic coordinate coding (SCC) [40]
employs a similar strategy to update the sparse codes in a
single task. For the multi-task learning, we summarize the
updating rules as follows:

(a) Perform P steps CCD to update the locations of the
non-zero entries It,(k+1)

i and the model s
t,(k+1)
i .

(b) Perform Q steps CCD to update the s
t,(k+1)
i in the index

of It,(k+1)
i .

In (a), we will pick up j-th coordinate to update the model
sti,j and non-zero entries, where j ∈ {1, ..., pt} in every CCD
step. We perform the update from the 1st coordinate to the pt-
th coordinate. Meanwhile, we calculate the gradient g based
on Eq. (7)) and update the model s

t,(k+1)
i,j based on g. The

calculation of g and s
t,(k+1)
i,j follows the equations:

g = [D̂t,(k), D̄t,(k)]Tj (Ω([D̂t,(k), D̄t,(k)], s
t,(k)
i , It,(k)

i )− xti), (8)

s
t,(k+1)
i,j = Γλ(s

t,(k)
i,j − g), (9)

where Ω is a sparse matrix multiplication function that has
three input parameters. Taking Ω(A,b, I) as an example, A
is a matrix, b denotes a vector and I records the locations
of non-zero entries in b (an index set). The output value of
Ω is defined as: Ω(A,b, I) = Ab. We manipulate the non-
zero entries of b and the corresponding columns of A based
on the index set I when computing Ab so that we speed up
the calculation by utilizing the sparsity of b. Γ is the soft
thresholding shrinkage function [41] as below:

Γϕ(x) = sign(x)(|x| − ϕ). (10)

In the end of (a), we count the non-zero entries in s
t,(k+1)
i and

store the non-zero index in It,(k+1)
i . In (b), we perform Q steps

CCD by only considering the non-zero entries in s
t,(k+1)
i . As

a result, for each index l ∈ It,(k+1)
i , we calculate the gradient

g and update the s
t,(k+1)
i,l by:

g = [D̂t,(k), D̄t,(k)]Tl (Ω([D̂t,(k), D̄t,(k)], s
t,(k+1)
i , It,(k+1)

i )−xti),
(11)

s
t,(k+1)
i,l = Γλ((s

t,(k+1)
i,l − g). (12)

Since we only focus on the non-zero entries of the model
and P is less than 10 iterations and Q is a much larger
number, we significantly accelerate the entire sparse codes
learning process. The procedure of updating sparse codes can
be summarized into Algorithm 3.

However, in Eq. (5), there are two convex and non-smooth
regularizers for St. We propose to update the low-rankness
sparse codes by using the conventional Inexact Augmented La-
grange Multiplier (IALM) [42]. IALM is an iterative method
that augments the Lagrangian function with quadratic penalty
terms, which allows closed-form updates for each variable in
the problem. Therefore, solving the `1 and the nuclear norm
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Algorithm 4: Updating dictionaries D̂k+1
t and D̄k+1

t

Input : Image patch xti, dictionaries D̂t,(k) and
D̄t,(k), sparse codes s

t,(k+1)
i and index set

It,(k+1)
i .

Output: The updated dictionaries D̂k+1
t and D̄k+1

t

1 begin
2 Update the Hessian matrix Hk+1

t by Eq. (17).
3 R = Ω([D̂t,(k), D̄t,(k)], s

t,(k+1)
i , I

t,(k+1)
i )− xti.

4 for j = 1 to Q do
5 for l ∈ I

t,(k+1)
i do

6 Update every element l by Eq. (19).

will result in solving the following problem, where we use
two slack variables St2 and St3 for the two terms:

min
Dt∈Ψt,St1,S

t
2,S

t
3

T∑
t=1

(
1

2
||Xt − [D̂, D̄t]St1||2F + λ1||St2||1,1

+λ2||St3||∗ + tr[L1(St1 − St2)] + tr[L2(St1 − St3)]

+
µ1

2
||St1 − St2||2F +

µ2

2
||St1 − St3||2F ),

(13)

where L1 and L2 are lagrange multipliers, and µ1 and µ2 are
two positive scalars. IALM efficiently minimize Eq. (13) and
the validity and optimality of Eq. (13) is guaranteed by the
following theorem.

Theorem 1: For Eq. (13), if {µkr}(r = 1, 2) is non-
decreasing and

∑+∞
k=1 1/µkr = +∞ then (S2,S3) converge

to an optimal solution (S∗2,S
∗
3).

We provide the proof of Theorem 1 in Supplemental Mate-
rial.

Theorem 1 only guarantees convergence but does not spec-
ify the rate of convergence for the IALM method and we
discuss the convergence rate at the end of this section. we
use blockwise coordinate descent to alternatively update each
variable of St1, St2, St3 with all other variables fixed to their
most recent values as follows:

St∗2 = Ωλ1
µ1

(St1 +
L1

µ1
),St∗3 = Θλ2

µ2

(St1 +
L2

µ2
),

St∗1 = (DtTDtµ1I + µ2I)−1G,

(14)

where G = DtTXt − L1 − L2 + µ1S
t
2 + µ2S

t
3, Ωλ(S) =

sign(S)(|S| − λ)+ is the soft-thresholding operator and
Θλ(S) = UΩλ(Σ)V T is the singular value soft-thresholding
operator with S = UΣV T is the SVD of S. Then, we can
update the multipliers with φ > 1 as follows,

L1 = L1 + µ1(St1 − St2);L2 = L2 + µ2(St1 − St3);

µ1 = φµ1;µ2 = φµ2.
(15)

After we obtain St∗1 as St, we then fix St to update Dt.

B. Updating common and task-specific dictionaries

We update the dictionaries by fixing the sparse codes, thus,
and the optimization problem becomes:

min
D̂t,D̄t

F(D̂t, D̄t) =
1

2
||xti − [D̂t, D̄t]sti||22 (16)

We know the non-zero entries of s
t,(k+1)
i after we updating

the sparse codes. The key insight of MMLC is that we just
need to update the non-zero entries of the dictionaries but not
all columns of the dictionaries, and it dramatically accelerates
the optimization. When updating the i-th column and j-th
row’s entry of the dictionary D, the gradient of Dj,i is set
to be ∇Dj,i = si(D

T
j s − xj). If si = 0, the gradient would

be zero. We therefore do not need to update the Dj . The
learning rate is set to be an approximation of 1/Hk+1

t , which
is updated by the sparse codes s

t,(k+1)
i in k-th iteration. We

first update the Hessian matrix Hk+1
t by:

Hk+1
t = Hk

t + s
t,(k+1)
i s

(t,(k+1))T
i . (17)

One step SGD is performed to update the dictionaries: D̂k+1
t

and D̄k+1
t . We use a vector R to store the information Dz− x

in order to speed up the computation.

R = Ω([D̂t,(k), D̄t,(k)], s
t,(k+1)
i , It,(k+1)

i )− xti. (18)

Here, R = τ([D̂(k−1), D̄t,(k−1)],St,(k))−Xt, where τ(A,B)
is a matrix multiplication function and τ(·) = AB. The pro-
cedure of learning the l-th column and j-th row of dictionaries
takes the form of

[D̂k+1
t , D̄k+1

t ]j,l = [D̂t,(k), D̄t,(k)]j,l−
1

Hk+1
t (l, l)

s
t,(k+1)
i,l Rj ,

(19)
where l is the non-zero entry stored in It,(k+1)

i . We let the
learning rate be the inverse of the diagonal element of the
Hessian matrix as 1/Hk+1

t (l, l) for the l-th column of the
dictionary.

It is important to normalize the dictionaries D̂t,(k+1) and
D̄t,(k+1) after updating them because of Dt ∈ Ψt in equation
(Eq. (16)). Since the dictionaries updating procedure only
occurs at non-zero entries, we perform the normalization on
the the corresponding columns of s

t,(k+1)
i . The step of utilizing

non-zero entries from It,(k+1)
i accelerates the whole learning

process. We summarized the updating rules of dictionaries into
Algorithm 4.

C. Updating resemblance term
After we update Dt, we finally calculate wp,q , and update

the fourth term of Eq. (5) at the end of k-th epoch. We update
the inherent resemblant knowledge term with the iterative soft-
thresholding [43]. We first calculate the gradient g based on
Eq. (20), and then update the model St,(k) based on g. The
calculation of g and St,(k) follows the equations:

g =
1

γ
DtXt + [I− 1

γ
(DtTDt + wp,qλ3I)]St,(k−1),

St,(k) = Ωλ3(g + wp,q
λ3

γ
Dt),

(20)

where γ is a non-negative parameter and Ωλ3
is the soft-

thresholding operator. Details of MMLC updating rules can
be found in Algorithm 2.

The convergence of MMLC algorithm is reached when the
error of the objective function is below a threshold ε = 10−3

and the SVD of S can be computed efficiently with time
complexity O(mnl), where l < min(m,n) is its rank. It
is worth noting that the overall computational complexity of
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Fig. 3. Comparison of rMSE performance by varying the size of common
dictionary.

TABLE I
TIME COMPARISONS OF MMLC AND STSC BY VARYING DICTIONARY

SIZE ON ADNI-I DATASET.

Dictionary Size MMLC STSC
500 1.74 hour 8.84 hour
1000 3.34 hour 21.95 hour
2000 6.93 hour 49.90 hour

MMLC is O(m3+ε−0.5mn+m2n) when the number of IALM
iterations is O(ε−0.5). This is much faster than the complexity
of conventional method O(m3 +m2n+mn2).

IV. EXPERIMENTS

A. Dataset

Data is downloaded from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database ([44], adni.loni.usc.edu).
ADNI is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations.
Subjects have been recruited from over 50 sites across the
U.S. and Canada. The primary goal of ADNI is to test
whether biological markers, such as serial MRI and positron
emission tomography (PET), combined with clinical and neu-
ropsychological assessments, can measure the progression of
mild cognitive impairment (MCI) and early AD. Subjects
originally recruited for ADNI-1 and ADNI-GO had the option
to be followed in ADNI-2. For up-to-date information, see
www.adniinfo.org.

In this work, we study the performance of MMLC on
the entire ADNI-1 cohort. We use T1-weighted magnetic
resonance images (MRIs) coming from seven different time
points: baseline, 6-, 12-, 18-, 24-, 36- and 48-month. 837, 733,
728, 326, 641, 454 and 251 are the sample sizes corresponding
to seven time points, respectively. Thus, we learn a total of
3970 images and the responses are the Mini Mental State
Examination (MMSE) and Alzheimer’s Disease Assessment
Scale cognitive subscale (ADAS-Cog) score. In addition, we
remove 23 subjects who do not have MMASE and ADAS-cog
information at baseline in this work.

B. Experimental Setting

1) Surface features: We use hippocampal surface multi-
variate morphometry statistics (MMS) [14] (Fig. 1 (c)) as
our learning features. The original input data are the three-
dimensional (3D) T1-weighted images (Fig. 1 (a)) from
ADNI dataset. We first use FIRST(https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FIRST) to segment the original data and obtain
the hippocampus substructure (Fig. 1 (b)). We then adopt

the surface fluid registration [45] to obtain surface geometric
features for automated surface registration. Following that,
a set of vertex-wise hippocampal MMS features are com-
puted as [14]. They consist of surface multivariate tensor-
based morphometry (mTBM) and radial distance (RD). mTBM
describes the surface deformation along the surface tangent
plane while RD reflects surface differences along the surface
normal directions. MMS features consist 4×1 vectors on each
vertex of 15000 vertices on every hippocampal surface (each
subject has two hippocampal surfaces). We select 1102 patches
of size 10 × 10 on each hippocampal surface mesh and each
patch dimension is 400. We use the baseline and 6-month
imaging data as training data and predict 12-month to 48-
month clinical scores.

2) MMLC settings: The model is trained on an Intel(R)
Core(TM) i7-6700 K CPU with 4.0GHz processors, 64 GB
of globally addressable memory and a single Nvidia TI-
TAN X GPU. The source code of MMLC are available at
http://gsl.lab.asu.edu/software/mmlc. In stage one, λ1 = 0.1,
λ2 = 10−2, λ3 = 10−3, µ1 = 10, µ2 = 1 and γ = 1, φ = 10.
The SCC sparsity parameter (λ1) is the best parameter setting
as [40]. The rest parameters are selected by cross-validation
results on the training data. For example, we use 5-fold cross-
validation with a grid search to pick the best parameters
for λ2 and λ3 from {1000, 100, 10, 1, 0.1, 10−2, 10−3,
10−4, 10−5}. In stage two, cross-validation is used to select
model parameters ξ (between 10−3 and 103). For common
and individual dictionary split, we compare the performance
by varying the dictionary size as 125:875, 250:750, 500:500,
750:250, 875:125. We observe that the algorithm has the best
performance while the ratio between the common dictionary
and the individual parts is 1:1. Therefore, in all experiments,
we use 1000 atoms for the dictionary and 500:500 split
atoms as the size of common and task-specific dictionaries
(Sec. IV-C1). When the sparse features are learned, Max-
Pooling is used to generate features for annotation and finally
we got a 1000-dimensional feature vector for each subject.

3) Evaluation method: In order to evaluate the model, we
randomly split the data into training and testing sets using a 9:1
ratio to avoid data bias and report the mean and standard devi-
ation based on 50 different splits of data. We evaluate the over-
all regression performance using weighted correlation coeffi-
cient (wR) and root mean square error (rMSE) for task-specific
regression performance measures. The two measures are
defined as wR(Y, Ŷ) =

∑T
t=1 Corr(Y

t, Ŷt)nt/
∑T
t=1 n

t,

rMSE(Yt, Ŷt) =
√
||Yt − Ŷt||22/nt. For wR, Yt is the

ground truth of target of task t and Ŷt is the corresponding
predicted value, Corr is the correlation coefficient between
two vectors and nt is the number of subjects of task t. rMSE
is computed for each task t, Yt is the ground truth of the
target responses and Ŷt is the corresponding prediction. The
smaller rMSE, the bigger wR mean the better results.

4) Comparison methods: We compare the proposed algo-
rithm MMLC with six other methods: 1) single-task regression
methods: LASSO [39] and Ridge [46]; 2) multi-task regression
methods: multi-task regression with `2,1 norm regulariza-
tion [47] (L21) and temporal group Lasso based multi-task
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM (MMLC) AND SIX OTHER METHODS (SEC. IV. B. (4)) ON PREDICTING FUTURE
MMSE SCORES OF 12-, 18-, 24-, 36-, 48-MONTH BASED ON BASELINE AND 6-MONTH HIPPOCAMPAL MORPHOMETRY DATA ON THE WHOLE ADNI-I

DATASET.

Methods wR M12 M18 M24 M36 M48
Lasso 0.40±0.09 4.04±0.77 3.46±0.97 5.53±0.86 4.39±0.74 4.73±1.49
Ridge 0.41±0.07 4.26±0.56 3.56±0.93 5.05±0.54 4.21±0.47 3.62±0.91
L21 0.57±0.01 3.32±0.63 4.75±0.75 4.64±0.88 4.08±1.01 3.11±1.05

ODL-L 0.63±0.08 2.99±0.63 2.88±0.68 4.29±0.84 3.62±1.45 2.93±1.07
TGL 0.70±0.05 2.73±0.72 4.00±1.31 4.00±0.64 3.19±1.38 2.60±1.42

MTSC 0.73±0.02 2.61±0.55 3.37±1.01 3.66±0.78 2.73±1.09 2.52±1.20
MMLC 0.75±0.02 2.55±0.23 2.99±0.89 3.38±0.76 2.65±0.79 2.32±1.02

TABLE III
PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM (MMLC) AND SIX OTHER METHODS (SEC. IV. B. (4)) ON PREDICTING FUTURE

ADAS-COG SCORES OF 12-, 18-, 24-, 36-, 48-MONTH BASED ON BASELINE AND 6-MONTH HIPPOCAMPAL MORPHOMETRY DATA ON THE WHOLE
ADNI-I DATASET.

Methods wR M12 M18 M24 M36 M48
Lasso 0.49±0.05 6.81±1.03 6.87±0.74 7.62±0.87 8.08±1.39 6.55±1.34
Ridge 0.46±0.07 7.68±0.96 6.89±1.69 7.84±1.54 8.59±0.62 6.64±1.58
L21 0.53±0.07 6.40±0.51 6.95±0.88 8.07±0.67 8.00±1.04 5.92±0.60

ODL-L 0.53±0.05 5.65±0.73 4.97±0.67 7.30±0.77 7.25±0.69 5.56±1.22
TGL 0.72±0.04 5.52±1.15 5.70±0.53 6.85±1.06 6.36±1.22 5.73±0.61

MTSC 0.77±0.02 5.18±0.88 4.64±1.12 6.76±1.35 6.78±1.54 5.27±1.76
MMLC 0.80±0.04 5.17±0.95 4.87±0.99 6.66±0.65 6.37±1.23 5.16±1.31
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Fig. 4. Scatter plots of actual MMSE and ADAS-Cog versus predicted values on M12 and M48 by using MMLC.

progression model [31] (TGL); 3) sparse coding-based meth-
ods: single-task sparse coding followed by Lasso [21] (STSC),
Muilti-source Multi-target dictionary learning followed by
Lasso regression [20] (MSMT) (λ2 = 0 and λ3 = 0 in Eq. (5)).

C. Experimental Results

1) The atoms of common and task-specific dictionaries: In
stage one of MMLC, the common dictionary is assumed to
be shared by different tasks. It is necessary to evaluate what
is an appropriate size of such common dictionary. Therefore,
we set the dictionary size to be 1000 and partition the

dictionary by different proportions: 125:875, 250:750,500:500,
750:250 and 875:125, where the left number is the size of
common dictionary while the right one is the size of individual
dictionary for each task. Fig. 3 shows the results of rMSE of
MMSE and ADAS-cog prediction. As it shows in Fig. 3, the
rMSE of MMSE and ADAS-Cog are lowest when we split the
dictionary by half and a half. It means the both of common
and individual dictionaries are of equal importance during the
multi-task learning.

2) Comparison with two other sparse coding methods:
There are quite a variety of sparse coding approaches in
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Fig. 5. The rMSE results of MMSE with different amount missing data by
MMLC-Lasso and Imputation-Lasso, respectively.

the literature. We compare our work with two other sparse
coding methods. We use the online dictionary learning code
package for (ODL) [18] method. We also implement the low-
rank shared dictionary learning (LRSDL) method, based on
the paper [48] and the github source code 1. To simplify the
comparison experiments, we adopt the classification problem
in our prior work [49] where we apply Stochastic Coordinate
Coding (SCC) to generate sparse hippocampal surface features
for classification studies. In this problem, its objective function
is the same as Eq. (1) for ODL and SCC (we provide the
objective function for LRSDL in Supplemental Material). We
conduct 6 different classification experiments and test ODL,
SCC and LRSDL measures in terms of running time, and
objective function value, respectively. For the comparison
methods, we select the hyper-parameter for LRSDL by using
the same strategy as SCC on the training set. We report
the detailed experimental results in Supplemental Material.
In summary, among these three methods, SCC achieves the
best balance between performance and the running time. The
experimental results may justify our selection of SCC method
for the studied problem.

3) The comparisons of time efficiency: We compare the
efficiency of our proposed MMLC with STSC (Algorithm 1).
In this experiment, we focus on the single batch size setting,
that is, we process one image patch in each iteration. We vary
the dictionary size as: 500, 1000 and 2000. For MMLC, the
ratio between the common dictionary and the individual parts
is 1:1. We report the results on ADNI-I cohort in Table I. We
observe that the proposed MMLC uses less time than STSC.
When the size of dictionary increases, MMLC is more efficient
and has a higher speedup compared to STSC.

4) Comparison results on MMSE and ADAS-cog: We report
the comparison results of MMLC and other methods of MMSE
and ADAS-cog with ADNI-1 cohort in Table II and Table III,

1https://github.com/tiepvupsu/DICTOL python

respectively. In both tables, we can find that the cognition pre-
dictions produced by MMLC achieves the highest correlation
with the ground truth data. In Fig. 4, we can find that MMLC
achieves relatively high correlation on both 12-month and 48-
month prediction results. It shows that the prediction results of
MMLC do not decrease quickly for the long term prediction.
After MMLC formulates temporary sequence information, the
results are more linear, reasonable and accurate on all time
points. Moreover, MMLC and MSMT methods can handle
missing data on both source and target sides. L21 and TGL can
deal with missing target data while neither Lasso nor Ridge
can deal with missing data.

In Table II, the proposed MMLC outperforms linear regres-
sion methods in terms of both rMSE and correlation coefficient
wR on four different time points. The results of Lasso and
Ridge are very close while sparse coding methods are superior
to them. For sparse coding methods, we observe that MTSC
obtains lower rMSE and higher correlation results than STSC
since MTSC considers the correlation between different time
slots and the task-specific relationship. STSC has lower rMSE
than MMLC on M18 because 18-month data is significantly
less than other time points and SC has its bias on that point.
We also notice that the proposed MMLC further improves the
result of MTSC since we consider the low-rankness of the
sparse codes and the resemblant knowledge in longitudinal
dataset. Note that we significantly improve the rMSE results
for later time points. A possible reason is that the baseline
images have less correlation with later time points images and
MTSC treats each time point equally.

In Table. III, we can observe that the best performance of
predicting scores of ADAS-Cog is achieved by MMLC in
four-time points. Comparing with L21, after MMLC dealing
with missing labels, the results are more linear, reasonable and
accurate. Due to the dimension of M36 and M48 is too small, it
is hard to learn a complete model. TGL also considers the issue
of missing labels, however, MMLC achieves better results
because MMLC incorporates multiple-source data and uses
common and individual dictionaries. This shows our method
is more efficient in dealing with incomplete data.

We also notice that the proposed MMLC further improved
the results of MSMT since we consider the low-rankness of
the sparse codes and the resemblant knowledge in longitudinal
dataset. Note that we significantly improve the rMSE results
for later time points. A possible reason is that the baseline
images have less correlation with later time points images and
MSMT treats each time point equally.

We show the scatter plots for the predicted values versus
the actual values for MMSE and ADAS-Cog on the M12 and
M48 in Fig. 4. In the scatter plots, we see the predicted values
and actual clinical scores have a high correlation. The scatter
plots show that the prediction performance for ADAS-Cog is
better than that of MMSE.

5) Ablation study on different amount of missing data:
Furthermore, we study whether MMLC helps improve incom-
plete data results by varying different amounts of missing data.
We start with a total of 122 subjects, which have complete
MMSE value at all seven time points. We then randomly
removed 20%, 30%, 40% and 50% target values during
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training. We perform our algorithm MMLC to the complete
data and different amounts of incomplete data. For comparison
purposes, we apply the imputation approach [50] to complete
the missing data which uses neighboring time point data to
approximate the missing value. For the experimental settings,
we follow those of Sec. IV-B2. Fig. 5 shows the rMSE results
with different amounts of missing data. The results show
that compared with the imputation method [50], our approach
has better results that are close to the performance with the
complete data.

V. DISCUSSION

In AD research, structural MRI-based hippocampal mor-
phometry measures correlate closely with differences and
changes in cognitive performance [51], [52], supporting their
validity as markers of AD progression. Recent research further
demonstrated that hippocampal morphometry may be used to
predict amyloid burden [53], [54] and identify AD related
changes in the preclinical stage [55], [15]. In this work,
we found that one may predict future cognitive decline by
analyzing longitudinal hippocampal morphometry changes.
Therefore, our work supports the potential to use sMRI
biomarkers as predictors of disease progression.

In this work, we adopted FIRST for hippocampus segmen-
tation. However, our hippocampal morphometry system has
utilized different segmented hippocampal data as input. For
example, our earlier work (e.g., [56], [57], [58]) used manually
segmented hippocampi to build surface meshes. Later we
adopted FIRST for automatic hippocampus segmentation [45]
and used it in almost all our hippocampal morphometry
research. Meanwhile, we also used FreeSurfer segmented
hippocampi to build hippocampal surface meshes [59]. All of
them achieved reasonable results in group difference studies
and thus the results demonstrated that our pipeline is robust to
segmentation methods. The reason for us to choose FIRST for
most of work is that FIRST can always generate topologically
sound segmentation results while FreeSurfer does not guar-
antee topologically correct results. Therefore, manual quality
control is necessary to incorporate FreeSurfer in our pipeline.
Thus far, our related prediction/classification work (e.g., [16],
[60]) all adopted FIRST segmented hippocampal surfaces to
work with relatively large scaled datasets. Since the input of
our MMLC is the surface features rather than the output from
segmentation tools, it is reasonable for us to expect that our
method is not sensitive to the hippocampus segmentation tools
used.

In ADNI, the scan times “12-month”, “24-month” etc. are
nominal times. With the baseline data, we computed the exact
interval months for all longitudinal data used in our research.
The average months and their standard deviations on each time
point are 6.94±0.96, 12.98±1.01, 19.10±1.06, 25.18±1.41,
37.15 ± 1.37 and 49.43 ± 1.42 for 6-, 12-, 18-, 24-, 36- and
48-month data, respectively. It shows that 6-month data are
not exactly scanned in the following 6-month. One way to
make them perfectly aligned to a specific month may be a
linear interpolation. However, it would assume all features
change linearly with time, a strong assumption which we try

to avoid in our formulation. On the other hand, our multi-
task model does not make any specific assumption on the
relationship between features on a specific time point. Our
model simply assumes that the time points are similar to each
other so that they can be clustered together (i.e., with the
same time label in the same matrix Xt). It can be uniquely
applied to analyze longitudinal data which are not collected
in the exact time points (such as ADNI, Australian Imaging
Biomarkers and Lifestyle Study of Aging (AIBL) [61] and
Arizona APOE cohorts [62]). Although we believe that the
development of more refined analysis models is necessary,
our current experimental results show that our models may
be effectively applied to analyze such longitudinal data.

In Supplementary Material, we show that the final objec-
tive function is non-decreasing and converges to an optimal
solution. However, as the objective function is not convex,
the problem may have multiple solutions. For general cases,
existing works show for such problems, the objective function
values increasingly convert to some value in each iteration
but whether it converges to the global optimum is still an open
problem [63], [64], [65]. With the current “greedy” strategy in
each optimization iteration, we can guarantee that the solution
converges to a local optimum. To show the local optimal so-
lution is also the global optimum, we empirically repeated our
experiments several times with different random initializations
and the solutions of our proposed method converged to the
minimum values which are very close to each other. Besides,
in Supplementary Material, we also compare the objective
function values of our MMLC methods with two state-of-
the-art methods, online dictionary learning (ODL) [18] and
low-rank shared dictionary learning (LRSDL) [48] methods.
With a similar experimental setup, the three minimal objective
function values are quite close. These results empirically
support that our work may converge to the global optimum
in the current study.

This work represents our initial efforts to develop robust
machine learning algorithms to study the prediction of cog-
nitive decline with both incomplete longitudinal brain images
and incomplete clinical labels. Nonetheless, there is still much
to be desired in our current experimental results on ADNI
cohort. For example, in both Table II and Table III, although
we generally achieved smaller rMSE results compared to other
methods, on some time points, our work only achieved slightly
improved results and our work sometimes had larger standard
deviation. In the future, we will further evaluate our work
in larger brain imaging cohorts (e.g., UKBiobank imaging
study [66]). Meanwhile, we will continue refining our methods
by exploring the underlying feature-feature relationship and it
may further improve our results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel multi-task sparse cod-
ing framework together with an efficient numerical scheme
(MMLC). Our experimental results clearly show MMLC offers
a unique perspective on prognosis with longitudinal data. In
the future, we will incorporate our recent feature selection
model [67] to visualize the identified imaging biomarkers. We

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2021.3070780

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XX 2020 11

will also refine our system by considering the design of a
hierarchical model to further improve its statistical power.

ACKNOWLEDGMENT

This research is supported in part by National Institutes of Health
(RF1AG051710, R01EB025032, U54EB020403, R21AG065942,
R01AG031581 and P30AG19610), ASU-Mayo seed grant, and Ari-
zona Alzheimer’s Consortium. Data collection and sharing for this
project was funded by the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (National Institutes of Health Grant U01 AG024904)
and DOD ADNI (Department of Defense award number W81XWH-
12-2-0012). ADNI is funded by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following: Alzheimer’s
Association; Alzheimer’ s Drug Discovery Foundation; BioClinica,
Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.;
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La
Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare;
Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical
Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.;
Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharma-
ceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc
Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes
of Health Research is providing funds to Rev December 5, 2013
support ADNI clinical sites in Canada. Private sector contributions
are facilitated by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern California
Institute for Research and Education, and the study is coordinated
by the Alzheimer’s Disease Cooperative Study at the University of
California, San Diego. ADNI data are disseminated by the Laboratory
for Neuro Imaging at the University of Southern California.

REFERENCES

[1] M. W. Weiner, D. P. Veitch, P. S. Aisen, L. A. Beckett, N. J. Cairns, R. C.
Green, and et al., “The Alzheimer’s Disease Neuroimaging Initiative:
a review of papers published since its inception,” Alzheimers Dement,
vol. 8, no. 1 Suppl, pp. 1–68, Feb 2012.

[2] G. B. Frisoni, N. C. Fox, C. R. Jack Jr, P. Scheltens, and P. M.
Thompson, “The clinical use of structural mri in Alzheimer disease,”
Nature Reviews Neurology, vol. 6, no. 2, p. 67, 2010.

[3] N. C. Fox, E. K. Warrington, P. A. Freeborough, P. Hartikainen, A. M.
Kennedy, J. M. Stevens, and et al., “Presymptomatic hippocampal
atrophy in Alzheimer’s disease. A longitudinal MRI study,” Brain, vol.
119 ( Pt 6), pp. 2001–2007, Dec 1996.

[4] B. C. Dickerson, I. Goncharova, M. P. Sullivan, C. Forchetti, R. S. Wil-
son, D. A. Bennett, and et al., “MRI-derived entorhinal and hippocampal
atrophy in incipient and very mild Alzheimer’s disease,” Neurobiol
Aging, vol. 22, no. 5, pp. 747–754, 2001.

[5] K. A. Josephs, P. R. Martin, S. D. Weigand, N. Tosakulwong, M. Buciuc,
M. E. Murray, and et al., “Protein contributions to brain atrophy
acceleration in Alzheimer’s disease and primary age-related tauopathy,”
Brain, vol. 143, no. 11, pp. 3463–3476, Dec 2020.

[6] L. Nadal, P. Coupe, C. Helmer, J. V. Manjon, H. Amieva, F. Tison, and
et al., “Differential annualized rates of hippocampal subfields atrophy
in aging and future Alzheimer’s clinical syndrome,” Neurobiol Aging,
vol. 90, pp. 75–83, 06 2020.

[7] D. H. Adler, L. E. M. Wisse, R. Ittyerah, J. B. Pluta, S. L. Ding,
L. Xie, and et al., “Characterizing the human hippocampus in aging
and Alzheimer’s disease using a computational atlas derived from ex
vivo MRI and histology,” Proc Natl Acad Sci U S A, vol. 115, no. 16,
pp. 4252–4257, 04 2018.

[8] K. Zhao, Y. Ding, Y. Han, Y. Fan, A. F. Alexander-Bloch, T. Han, and
et al., “Independent and reproducible hippocampal radiomic biomarkers
for multisite Alzheimer’s disease: diagnosis, longitudinal progress and
biological basis,” Science Bulletin, vol. 65, no. 13, pp. 1103 – 1113,
2020.

[9] L. G. Apostolova, R. A. Dutton, I. D. Dinov, K. M. Hayashi, A. W. Toga,
J. L. Cummings, and et al., “Conversion of mild cognitive impairment
to Alzheimer disease predicted by hippocampal atrophy maps,” Arch
Neurol, vol. 63, no. 5, pp. 693–699, May 2006.

[10] D. P. Devanand, R. Bansal, J. Liu, X. Hao, G. Pradhaban, and B. S.
Peterson, “MRI hippocampal and entorhinal cortex mapping in predict-
ing conversion to Alzheimer’s disease,” Neuroimage, vol. 60, no. 3, pp.
1622–1629, Apr 2012.

[11] E. Gerardin, G. Chetelat, M. Chupin, R. Cuingnet, B. Desgranges,
H. S. Kim, and et al., “Multidimensional classification of hippocampal
shape features discriminates Alzheimer’s disease and mild cognitive
impairment from normal aging,” Neuroimage, vol. 47, no. 4, pp. 1476–
1486, Oct 2009.

[12] G. Marti-Juan, G. Sanroma-Guell, R. Cacciaglia, C. Falcon, G. Operto,
J. L. Molinuevo, and et al., “Nonlinear interaction between APOE Îµ4
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