
Wavelet-Based Representation of Biological

Shapes

Bin Dong1, Yu Mao2, Ivo D. Dinov3, Zhuowen Tu3, Yonggang Shi3, Yalin
Wang3, and Arthur W. Toga3

1 Department of Mathematics, University of California, San Diego, 9500 Gilman
Drive, La Jolla, CA, 92093-0112

2 Department of Mathematics, University of California, Los Angeles, CA, 90095-1555
3 Center for Computational Biology, Laboratory of Neuro Imaging, 635 S. Charles

Young Dr., #225, University of California, Los Angeles, Los Angeles, CA, USA, 90055

Abstract. Modeling, characterization and analysis of biological shapes
and forms are important in many computational biology studies. Shape
representation challenges span the spectrum from small scales (e.g., mi-
croarray imaging and protein structure) to the macro scale (e.g., neu-
roimaging of human brains). In this paper, we present a new approach
to represent and analyze biological shapes using wavelets. We apply the
new technique to multi-spectral shape decomposition and study shape
variability between populations using brain cortical and subcortical sur-
faces. The wavelet-space-induced shape representation allows us to study
the multi-spectral nature of the shape’s geometry, topology and features.
Our results are very promising and, comparing to the spherical-wavelets
method, our approach is more compact and allows utilization of diverse
wavelet bases.

1 Literature Reviews

Imaging, representation, geometric modelling and topological characteriza-
tion of shape and form are important components of Computational Biology.
They apply across the vast length scales between genotypes to phenotypes, from
the small scale of microarray imaging for genomic, to the larger scale of neu-
roimaging of human brains. Here we review the existing techniques and algo-
rithms and present a new approach for representation and analysis of biological
shapes using wavelets. We apply the new method to multi-spectral shape decom-
position and study shape variability between populations using brain cortical and
subcortical surfaces.

Recently, N. Hacker et al. used conformal mapping and spherical wavelets
to analyze biological shapes (see [1–3]). Their idea is first mapping the original
shape onto a unit 2-sphere using a certain conformal mapping so that one obtains
a R

3-valued function f defined on the sphere; and then interpolate the function
onto the regular triangular mesh on the sphere (which is generated by recursively
subdividing an icosahedron); and then finally, apply spherical wavelet transform
to the interpolated function. The spherical wavelets they used were introduced
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by P. Schröder and W. Sweldens in [4], which were constructed using lifting
scheme (see W. Sweldens [5] and F. Arandiga et. al. [6]).

In this section, we also start from a R
3-valued function f determined by a

certain mapping from R
3 to S2. After that, we linearly interpolate the function

onto a triangular mesh, which is generated by recursively subdividing an octahe-
dron in R

3 (not restricted on the sphere) and then transforming the mesh onto
the sphere. This method was first introduced by E. Praun and H. Hoppe (see
[7]) in the context of computer graphics. The major advantage of it is that we
can transform the subdivided octahedron to a unit square so that we obtain an
image with R

3-valued entries (which were called geometric image in [7]), and
then we can apply traditional X-lets (e.g. wavelets, framelets, curvelets etc.) de-
composition. In this way we have plenty of good bases and frames (redundant
systems) to choose according the application we have.

Understanding the relationship between the structure and function of the
human brain in vivo has been the driving motivation for many neurosciences
research for centuries. The research efforts not only focus on studying normal de-
velopment but also understanding alterations in various clinical populations in-
cluding schizophrenia, Huntington’s disease, Alzheimer’s disease, Williams Syn-
drome, autism, stroke, chronic drug abuse, as well as pharmacological interven-
tions. For instance, there are multiple studies underway to quantify the differ-
ences between the brain structure of schizophrenic patients and healthy individ-
uals in different stages of this disease. Detection of these significant differences
via neuroimaging studies is not only useful to elucidate the link between change
in cognitive profile and change in brain structure, but also to improve diagno-
sis particularly in early stages of the disease. With the increasing interest in
carrying out such studies with large numbers of subjects, there is a need for a
unified framework for image segmentation to identify the structure of interest
(e.g. caudate, ventricles, cerebral cortex, sulcal regions) (see Z. Tu et. al. [8]), and
morphometric analysis which requires methods for shape representation, shape
comparison, and change in shape measurement (see P. Thompson and A. Toga
[9]).

2 Method

In this section we describe our test data and the specific approach we took
to represent shape using wavelets, as well as the statistical analysis we carry on
the wavelet-based shape decomposition to identify group, population, time or
variation differences. Throughout this paper, all shapes are assumed to be close
surfaces in R

3 with genus zero.

2.1 Data

Cortical Models: Surface objects of normal subjects and Williams syndrome
patients were used to explore the power of our method to synthesize the energy
of the shape content in a few wavelet coefficients. The demographics of the
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population included age (29.2 9.0), genders (approximately 50/50) and IQ scores,
P. Thompson et. al. [10]. Non-brain tissue (i.e., scalp, orbits) was removed from
the images, and each image volume was re-sliced into a standard orientation who
“tagged” 20 standardized anatomical landmarks in each subject’s image data set
that corresponded to the same 20 anatomical landmarks defined on the ICBM53
average brain (see Mazziotta et al. [11], Thompson et. al. [12]). Automated
tissue segmentation was conducted for each volume data set to classify voxels
as most representative of gray matter, white matter, CSF, or a background
class (representing extra cerebral voxels in the image) on the basis of signal
intensity. The procedure fits a mixture of Gaussian distributions to the intensities
in each image before assigning each voxel to the class with the highest probability,
Shattuck et. al. [13]. Then each individual’s cortical surface was extracted and
three-dimensionally rendered using automated software, MacDonald [14]. Each
resulting cortical surface was represented as a high-resolution mesh of 131,072
surface triangles spanning 65,536 surface points.

Hippocampal surfaces: High-resolution MRI scans were acquired from 12 AD
patients ages 68.4 1.9 and 14 matched controls 71.4 0.9, each scanned twice, 2.1
0.4 years apart. 3D parametric mesh models of the left and right hippocampi
and temporal horns were manually, Thompson et. al. [15]. For each scan, a
radio frequency bias field correction algorithm eliminated intensity drifts due
to scanner field inhomogeneity, using a histogram spline sharpening method,
Sled et. al. [16]. Images were then normalized by transforming them to ICBM53
stereotaxic space, Evens et. al. [17], with automated image registration software,
Collins et. al. [18]. To equalize image intensities across subjects, registered scans
were histogram-equalized.

Each 3D surface is mapped to a unit sphere in R
3 with 1-to-1 correspondence.

For cortical surfaces, the conformal mapping method of Shi et. al. [19, 20], is
used for hippocampal surfaces and that of Gu et. al. [21] for cortical surfaces.
For hippocampal surfaces, harmonic maps to the sphere are computed under
the constraints of a set of automatically detected landmark curves (see [19, 20]).
Figures (a) and (b) in Figure 1 shows a hippocampal shape and the mapping
of it on a unit sphere respectively, where in the latter, (x, y, z) values on each
vertex of the sphere are color-coded by RGB.

Fig. 1. Figure (a) is the given shape; (b) is the spherical function obtained by surface
mapping; (c) is the geometric image.
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2.2 Wavelet-Based Representation for Shapes

From the previous section, we got a function f defined on the unit sphere
S2, which has vector values in R

3. However, the values of the function were only
given on an irregular grid on the sphere. To apply the wavelet transform, we
need to get the value of the function on a much more regular spherical grid.
There are many approaches to get such kind of grids. The construction of the
spherical mesh grid, sometimes called spherical triangular map, is an interesting
subject itself (see e.g. Buss and Fillmore [22], and Praun and Hoppe [7]). The
basic idea is to start from a polyhedral base, which gives a simple but perfect
grid on sphere, and then use some appropriate scheme to subdivide the mesh. A
comparison of such techniques can be found in [7].

Fig. 2. Two-levels wavelet decomposition: (a) and (e) are the low frequency coefficients
of level one and two; (b)-(d) are wavelet coefficients of level 1 and band 1-3; (f)-(h) are
wavelet coefficients of level 2 and band 1-3.

In our approach, we start from a recursive subdivision of the octahedral
base. By mapping the subdivision grid onto the unit sphere, we get a regular
grid structure on the sphere, and the function values on such a spherical grid
can be obtained by linear interpolation. The reason we choose octahedron is that
it can be unfolded to a plain image easily. Therefore, we can build a 1-1 map
between a sphere and an image without too much distortion, and the data of a
shape is transformed to a R

3-valued function defined on a plain image, which
gives a geometric image (as shown in (c) Figure 1). Since the mesh on the plain
image is nothing but a Cartesian grid, a huge family of X-lets can be used to
analyze properties of the geometric image. The wavelets that we shall use in the
following experiments are Daubechies’ Biorthogonal Wavelets [23]. We note that
the boundary condition is a little complicated in this case. Topological saying,
the two halves of each side of the image must be identified with each other (see
[7] for more details). Thus, we need to setup corresponding boundary rules for
the wavelet filters.
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We now summarize the entire multiscale representation process in the fol-
lowing Algorithm 1. Figure 2 shows how the decomposition is carried out to the
geometric image we have. Since all low frequency and wavelet coefficients has x,
y, and z three components, all coefficients are visualized as color images.

Algorithm 1 Wavelet-Based Representation for Shapes
Given some triangulated biological shape (V, T ), where V ∈ R

3 is the vertex set and
T is triangulation.
1. Find the mapping M : V �→ S2, which also induces a triangulation on S2 denoted
as (VS, TS) =: MS . Define f0 = M−1 : S2 �→ V (Figure 1(b)).
2. Recursively subdivide an octahedron uniformly in R

3 up to certain level N . Then
project the mesh on to S2 and obtain a mesh on S2 denoted as (VN , TN ) =: MN .
3. Interpolate f0 from MS to MN and obtain a new spherical function f , which, by
construction, can be easily transformed to a geometric image (Figure 1(c)).
4. Perform regular X-let decomposition and reconstruction (with proper boundary
conditions).

2.3 Multiscale Curvature-Like Characterization

As shown in Figure 2 above, for each level and band of the wavelet coefficients,
we have x, y, and z three components. The coefficient vectors reflect details of
the shape at each position and scale. Indeed, the wavelet vectors can be treated
as the displacement between the observed position and the predicted position
calculated from the convolution of the wavelet filter and the scale coefficients of
the neighboring vertices. Therefore, the direction of the wavelet vector gives us
some information of the local geometric properties. For example, if we consider
the wavelet vector at a local sunken area, then the approximated position inter-
polated from the neighboring vertices should be outer than the observed vertex,
which means that the wavelet vector is pointing outwards.

However, we cannot tell the geometric property of the shape from the wavelet
coefficients directly, and a single wavelet coefficient itself is geometrically mean-
ingless, so we combine the three components by calculating the inner product
of the wavelet vector and the normal vector of the shape. As what we explained
above, these inner products reflect geometric property at the corresponding po-
sition. In this way, a so called multiscale curvature-like characterization of the
shape is obtained: For given scale (or level), we compute normal of the shape
at all positions under that scale and take the inner product of the normal with
the wavelet coefficient vector. We then obtain a set of curvature-like coefficients
within each level and band. The statistical analysis given in the following section
is based on this representation. Figure 3 shows how this representation can be
used to find cortical sulci and gyri.
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Fig. 3. Red regions in figure (a) and (b) are the sulcal and gyral regions respectively.

3 Numerical Experiments

3.1 Sparsity of the Representation

One of the most important properties of traditional wavelet transform is that
it gives a MSR of the underlying function and the representation is sparse. We
now show that our method as discussed in the previous section also gives a
sparse MSR for the biological shapes we have. Figure 4 and 5 shows the MSR
provided by the wavelet transform, and Figure 6 and 7 shows the sparsity of
the representation, where one can see that even with only 2500 coefficients, the
reconstructed shapes preserve most of the features of the original shapes.

Fig. 4. Figures left to right present a MSR of the hippocampus from courser approxi-
mation to finer approximation. The last figure is the original hippocampus.

Fig. 5. Figures from left to right present a MSR of the cortex from courser approxi-
mation to finer approximation. The last figure is the original cortex.

One advantage of our method over spherical wavelet transform in analyzing
biological shapes is that we have a much more flexible choice of wavelets. In
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Fig. 6. Figures (a)-(c) are the reconstructed hippocampus using 1000, 2500 and 5000
coefficients, and the relative errors of them from the original shape are 1.171871e-004,
6.172233e-005 and 3.915038e-005 respectively. Figure (d) is the original hippocampus.

Fig. 7. Figures (a)-(c) are the reconstructed cortices using 1000, 2500 and 5000 co-
efficients, and the relative errors of them from the original shape are 6.449351e-004,
3.154665e-004 and 1.664914e-004 respectively. Figure (d) is the original cortex.

Fig. 8. Figures (a) and (b) are the decay of relative �2 error verse number of coefficients
used, where the underline shapes are the hippocampus and cortex as shown in Figure
6 and 7.
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particular, we can choose one wavelet with very high vanishing moments so that
the representation is very sparse. Figure 8 below shows a comparison of our
method to spherical wavelets as used in [1–3].

The multiscale sparse representation provided by the wavelet transform has
many applications. For example, one can do shape compression, or in other
words, feature dimension reduction for shapes. One can also do shape denois-
ing via thresholding or shrinkage of wavelet coefficients. Since these kinds of
applications are not of our main interest, we shall not explore them in further
details.

3.2 Non-Parametric Tests

For given two groups of hippocampus, one from healthy population, the other
from the one with Alzheimer’s disease, we apply Wilcoxon’s rank sum test (see
e.g. [24]) to the multiscale curvature-like representation of shapes to find regions
on the shape where the two groups are different. The -value we choose in the
results below is 0.05. We note that the tests are more reliable in higher levels
than those in lower levels. This is because the shape corresponding to a higher
level is a smoothed version of the original shape, which means we have more
statistical inference of the object. As one can see from below that the higher the
level is, the larger each area of significance will be. In Figure 9 below, we used
the mean hippocampus as the reference shape, which is calculated by simply
taking an average of all the vector values of hippocampus at every position.

Fig. 9. Figures (a) and (b) show regions of significance of level 5 and 4 respectively.
Here, each pair of hippocampus is viewed from the bottom.

4 Discussion

The wavelet-based shape representation technique proposed here allows one
to study the geometry, topology and features of general biological shapes using
any of the standard wavelet-bases on real-valued Euclidean spaces. The results
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we obtained are robust and consistent across individuals and populations. In ad-
dition to direct representation and shape characterization, this technique allows
us to compute mean shapes and improve the shape-analysis statistical power by
concentrating the energy of the shapecharacteristics in few significant wavelet
coefficients, Dinov et. al. [5]. We are in the process of validating the new method-
ology using larger number of subjects, different types of applications (e.g., study-
ing the population-specific differences in the proportion of gyri to sulcal area)
and quantitative comparison with spherical-harmonics, spherical wavelets and
tensor-based morphometry techniques.

The computational complexity of the algorithm is O(N log N) relative to the
volume size N. We have a Matlab implementation that we are in the process of
converting to stand-alone C++ code. We tested the actual computation time of
the wavelet decomposition and reconstruction on a PC with Inter(R) Core(TM)
2, 2.13 GHz and 1G physical memory. For a given shape with 65,536 surface
points, the computation time is 2-20 seconds, depending on the choice of basis
and level of decomposition.
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