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Abstract

Automatic computation of surface correspondence via
harmonic map is an active research field in computer vi-
sion, computer graphics and computational geometry. It
may help document and understand physical and biological
phenomena and also has broad applications in biometrics,
medical imaging and motion capture. Although numerous
studies have been devoted to harmonic map research, lim-
ited progress has been made to compute a diffeomorphic
harmonic map on general topology surfaces with landmark
constraints. This work conquer this problem by changing
the Riemannian metric on the target surface to a hyperbolic
metric, so that the harmonic mapping is guaranteed to be
a diffeomorphism under landmark constraints. The com-
putational algorithms are based on the Ricci flow method
and the method is general and robust. We apply our algo-
rithm to study constrained human brain surface registration
problem. Experimental results demonstrate that, by chang-
ing the Riemannian metric, the registrations are always dif-
feomorphic, and achieve relative high performance when
evaluated with some popular cortical surface registration
evaluation standards.

1. Introduction

Analysis and understanding of shapes is one of the most
fundamental tasks in our interaction with the surrounding
world. There are two major problems in shape analysis re-

search: similarity and correspondence. Examples of sim-
ilarity research include 3D face recognition [5], shape re-
trieval [6], etc. Among various correspondence research,
automatic computation of surface correspondence regulated
by certain geometric or functional constraints is an impor-
tant research field in computer vision and medical imaging.
For example, in human brain mapping research, since cy-
toarchitectural and functional parcellation of the cortex is
intimately related the folding of the cortex, it is important
to ensure the alignment of the major anatomic features, such
as sucal landmarks.

Among various rigid and non-rigid surface registration
approaches (e.g. [3, 5, 16]), harmonic map is one of the
most broadly applied methods [27, 32]. The advantages of
harmonic map computation are: (1) it is physically natural
and can be computed efficiently; (2) it measures the elastic
energy of the deformation so it has clear physical interpre-
tation; (3) for a planar convex domain, it is diffeomorphism;
(4) it can be computed by solving an elliptic partial dif-
ferential equation so its computation is numerically stable;
(5) it continuously depends on the boundary condition so it
can be controlled by adjusted boundary conditions. In com-
puter vision and medical imaging fields, surface harmonic
map has been used to compute spherical conformal map-
ping [12], image registration [13], high resolution tracking
of non-rigid motion [27], non-rigid surface registration, etc.

However, the current state-of-the-art surface harmonic
map research has some limitations. For example, it usu-
ally only works with genus zero surfaces but does not work
with general topology surfaces. It is hard to add landmark
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curve information. A harmonic map combined with land-
mark matching conditions usually does not guarantee dif-
feomorphism. All these problems become obstacles to ap-
ply harmonic map to solve general non-rigid surface match-
ing problems. In contrast, in current work, we slice along
the landmark curves on general surfaces and assign a unique
hyperbolic metric on the template surface, such that all the
boundaries become geodesics. Then by establishing har-
monic mappings, the obtained surface correspondences are
guaranteed to be diffeomorphic.

In this paper, we apply the proposed method to study
human brain cortical surface registration problem. Early
research [11, 24] has demonstrated that surface-based ap-
proaches may offer advantages as a method to register brain
images. The cortical surface registration may help identify
early disease imaging biomarkers, develop new treatments
and monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

In summary, the main contributions of the current work
are as follows:
1. Introduce a novel algorithm to compute harmonic map-
pings on hyperbolic metric using nonlinear heat diffusion
method and Ricci flow.
2. Develop a novel brain registration method based on hy-
perbolic harmonic maps. The new method overcomes the
shortcomings of the conventional methods, such that the
registration is guaranteed to be diffeomorphic.
3. Introduce a novel general methodology to achieve spe-
cial goals in geometric processing by changing the surface
Riemannian metrics.

2. Previous Works
In computer vision and medical imaging research, sur-

face conformal parameterization with the Euclidean metric
have been extensively studied [1, 22, 31, 30, 4, 28]. Wang
et al. [26] studied brain morphology with Teichmüller space
coordinates where the hyperbolic conformal mapping was
computed with the Yamabe flow method. Zeng [31] pro-
posed a general surface registration method via the Klein
model in the hyperbolic geometry where they used the in-
versive distance curvature flow method to compute the hy-
perbolic conformal mapping.

Various surface registration methods were proposed in
computer vision field [7, 19, 16, 17]. To register brain cor-
tical surfaces, a common approach is to compute a range
of intermediate mappings to some canonical parameter
space [24, 11, 29]. A flow, computed in the parameter space
of the two surfaces, then induces a correspondence field in
3D [8]. This flow can be constrained using anatomical land-
mark points or curves [2, 14, 20, 33], by sub-regions of in-
terest [15], by using currents to represent anatomical varia-
tion [10], or by metamorphoses [25]. There are also various
ways to optimize surface registrations [4, 18, 23]. Over-

all, finding diffeomorphic mappings between brain surfaces
is an important but difficult problem. In most cases, ex-
tra regulations, such as inverse consistency [23], have to be
enforced to ensure a diffeomorphism. Since the proposed
work offers a harmonic map based scheme for diffeomor-
phisms which guarantees a perfect landmark curve regis-
tration via enforced boundary matching, the novelty of the
proposed work is that it facilitates diffeomorphic mapping
between general surfaces with delineated landmark curves.

3. Theoretic Background
This section briefly covers the most relevant concepts

and theorems of harmonic maps [21] and surface Ricci flow
[31].

Ricci Flow Suppose (S,g) is a compact surface embed-
ded in R3, g is the induced Euclidean metric.

Definition 3.1 (Surface Ricci Flow) The normalized sur-
face Ricci flow is defined as

dg(t)

dt
= 2

(
2πχ(S)

A(0)
−K(t)

)
g(t)

where χ(S) is the Euler characteristic number of S, A(0) is
the total area of the surface at time 0, K(t) is the Gaussian
curvature induced by g(t).

Theorem 3.2 (Hamilton) If χ(S) < 0, then the solution to
the normalized Ricci flow equation exists for all t > 0 and
converges to a metric with constant curvature 2πχ(S)

A(0) .

By running Ricci flow, a hyperbolic metric of the sur-
face can be obtained, which induces −1 Gaussian curvature
everywhere.

Hyperbolic Plane The Poincaré’s disk model for the hy-
perbolic plane H2 is the unit disk on the complex plane
{z ∈ C| |z| < 1} with Riemannian metric (1− zz̄)−2dzdz̄.
The geodesics (hyperbolic lines) are circular arcs perpen-
dicular to the unit circle. The hyperbolic rigid motions are
Möbius transformations ϕ : z → eiθ(z − z0)/(1 − z̄0z).
The axis of ϕ is the hyperbolic line through its fixed points:
z1 = limn→∞ ϕn(z), z2 = limn→∞ ϕ−n(z). Given two
non-intersecting hyperbolic lines γ1 and γ2, there exists a
unique hyperbolic line τ orthogonal to both of them, and
gives the shortest path connecting them. For each γk, there
is a unique reflection ϕk whose axis is γk, then the axis of
ϕ2 ◦ ϕ−1

1 is τ .
Another hyperbolic plane model is the Klein’s disk

model, where the hyperbolic lines coincide with Euclidean
lines. The conversion from Poincaré’s disk model to Klein
disk model is given by z → 2z/(1 + zz̄).

2



Fundamental Group and Fuchs Group Let S be a sur-
face, q ∈ S is a base point. Consider all the loops through
q. Two loops are homotopic, if one can deform to the other
without leaving S. The product of two loops is the concate-
nation of them. All the homotopy classes of loops form the
fundamental group (homotopy group), denoted as π1(S, q).

Furthermore, all the homotopic classes of paths on the
surface starting from p form a simply connected surface S̃,
the projection map p : S̃ → S maps each path to its end
point, the projection map is a local homeomorphism. The
pair (S̃, p) is called the universal covering space of S.

Suppose S is with a hyperbolic metric, then its univer-
sal covering space S̃ can be isometrically embedded onto
the hyperbolic plane H2. A Fuchsian transformation ϕ
is a Möbius transformation, that preserves the projection
ϕ ◦ p = p. All Fuchsian transformations form the Fuchs
group, Fuchs(S), which is isomorphic to the fundamental
group π1(S, q). Choose a base point q̃ ∈ H2, p(q̃) = q.
A path γ̃ ∈ H2 connecting q̃ and ϕ(q̃), then the projection
p(γ̃) is a loop on the base surface S. The axis of ϕ is the
unique geodesic in the homotopy class of p(γ̃).

Hyperbolic Pants Decomposition A pair of pants is a
genus zero surface with 3 boundaries. Any surfaces S with
complicated topology can be decompose to |χ(S)| pairs of
pants. If S has a hyperbolic metric, then all the cutting loops
can be chosen to be geodesics, as shown in Fig.2 (a) and (b).

Furthermore, each pair of hyperbolic pants can be fur-
ther decomposed. Assume the pair of pants have three
geodesic boundaries {γi, γj , γk}. Let {τi, τj , τk} be the
shortest geodesic paths connecting each pair of them. The
shortest paths divide the surface to two identical hyper-
bolic hexagons with right inner angles. when mapped to
the Klein’s model, the hyperbolic hexagons coincide with
convex Euclidean hexagons.

Harmonic Map Suppose S is a closed oriented surface
with a Riemannian metric g, by running surface Ricci flow,
one can obtain a Riemannian metric with constant curvature
+1, 0,−1 everywhere. The universal covering space of the
surface can be isometrically embedded onto the sphere C ∪
{∞}, the Euclidean plane C or the hyperbolic plane H2.
This process is called the uniformization of the surface.

Based on the uniformization, one can construct an atlas,
such that on each chart {z}, the original Riemannian metric
g = σ(z)dzdz̄, which is called the isothermal parameters
of the surface. An atlas consisting of isothermal parameter
charts is called an conformal structure. It is convenient to
use complex differential operator ∂z = 1/2(∂x + i∂y) and
∂z̄ = 1/2(∂x − i∂y).

Given a mapping f : (S1,g1) → (S2,g2), z and w
are local isothermal parameters on S1 and S2 respectively.

g1 = σ(z)dzdz̄ and g2 = ρ(w)dwdw̄. Then the mapping
has local representation w = f(z) or denoted as w(z).

Definition 3.3 (Harmonic Map) The harmonic energy of
the mapping is defined as

E(f) =

∫
S

ρ(z)(|wz|2 + |wz̄|2)dxdy

If f is a critical point of the harmonic energy, then f is
called a harmonic map.

The necessary condition for f to be a harmonic map is the
Euler-Lagrange equation wzz̄ +

ρw

ρ wzwz̄ ≡ 0. The follow-
ing theorem lays down the theoretic foundation of our pro-
posed method.

Theorem 3.4 [21] Suppose f : (S1,g1) → (S2,g2) is
a degree one harmonic map, furthermore the Riemannian
metric on S2 induces negative Gauss curvature, then for
each homotopy class, the harmonic map is unique and dif-
feomorphic.

4. Algorithms
In this section we first explain our registration algorithm

pipeline as illustrated in Alg. 1 and Fig. 1:

Algorithm 1 Brain Surface Registration Algorithm
Pipeline.

1. Slice the cortical surface along the land marks.
2. Compute the hyperbolic metric using Ricci flow.
3. Hyperbolic pants decomposition, isometrically embed
them to Klein model.
4. Compute harmonic maps using Euclidean metrics
between corresponding pairs of pants, with consistent
boundary constraints.
5. Use nonlinear heat diffusion to improve the mapping
to a global harmonic map on Poincaré disk model.

1. Preprocessing The cortical surfaces are reconstructed
from MRI images and represented as triangular meshes.
The sucal landmarks are manually labeled on the edges of
the meshes. Then we slice the meshes along the landmark
curves, to form topological multiple connected annuli.

2. Discrete Hyperbolic Ricci Flow Because the Euler
characteristic number of the cortical surfaces are negative,
they admit hyperbolic metrics. We treat each triangle as a
hyperbolic triangle and set the target Gauss curvatures for
each interior vertex to be zeros, and the target geodesic cur-
vature for each boundary vertex to be zeros as well. Then
compute the hyperbolic metrics of the brain meshes using
discrete hyperbolic Ricci flow method [31]. Algorithm 2
describes the details.
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Figure 1. Algorithm Pipeline (suppose we have 2 brain surface M
and N as input): (a). The input brain models M and N , with land-
marks been cut open as boundaries. (b). Hyperbolic embedding of
the M and N on Poincaré disk. (c). Decompose M and N into
multiple pants by cut the landmarks into boundaries, and each pant
further decomposed to 2 hyperbolic hexagons. (d). Hyperbolic
hexagons on Poincaré disk become convex hexagons under Klein
model, then a one-to-one map between the correspondent parts of
M and N can be obtained. Then we can apply our hyperbolic heat
diffusion algorithm to get a global harmonic diffeomorphism. (e).
Color coded registration result of M and N .

Algorithm 2 Discrete Hyperbolic Ricci Flow.
Input: Surface M .
Output: The hyperbolic metric U of M .
1. Assign a circle at vertex vi with radius ri; For each
edge [vi, vj ], two circles intersect at an angle ϕij , called
edge weight.
2. The edge length lij of [vi, vj ] is determined by
the hyperbolic cosine law: coshlij = coshricoshrj +
sinhrisinhrjcosϕij

3. The angle θjki , related to each corner , is determined
by the current edge lengths with the inverse hyperbolic
cosine law.
4. Compute the discrete Gaussian curvature Ki of each
vertex vi:

Ki =

{
2π −

∑
fijk∈F θjki , interior vertex

π −
∑

fijk∈F θjki , boundary vertex
(1)

where θjki represents the corner angle attached to vertex
vi in the face fijk
5. Update the radius ri of each vertex vi: ri = ri −
ϵKi sinh ri
6. Repeat the step 2 through 5, until ∥Ki∥ of all vertices
are less than the user-specified error tolerance.

3. Hyperbolic Pants Decomposition In our work, the in-
put surface is a genus zero surface with multiple boundary
components ∂S = γ0 + γ1 + · · · γn, moreover, the surface
is with hyperbolic metric, and all boundaries are geodesics.
The algorithm is as follows: choose arbitrary two boundary
loops γi and γj , compute their product [γi·γj ], if the product
is homotopic to [γ−1

k ], then choose other pair of boundary
loops. Otherwise, suppose [γiγk] is not homotopic to any

boundary loop, compute its corresponding Möbius transfor-
mation, ϕγiγj , and its fixed points ϕ+∞

γiγj
(0) and ϕ−∞

γiγj
(0).

The hyperbolic line through the fixed points is the axis of
the ϕγiγj , which is the geodesic in [γiγj ]. Slice the mesh
along the geodesic, and repeat the process on each con-
nected components, until all the connected components are
pairs of pants. Fig 2 (a) shows how to decompose a closed
surface into pant surface (b). (c) and (d) show an example of
the pant decomposition process on open boundary surfaces.
Alg. 3 gives the computational steps.

Figure 2. Hyperbolic pants decomposition. (a) shows an arbitrary
closed surface can be decomposed into multiple pant surfaces. (b)
shows a pant surface. For open boundaries surfaces, we cut along
γ′ which is the geodesic loop of homotopy class of [γ0 · γ1] ((c)
and (d)). Repeat it until all pants are decomposed.

Algorithm 3 Hyperbolic Pants Decomposition.
Input: Topological sphere M with B boundaries.
Output: Pants decomposition of M .
1. Put all boundaries γi of M into a queue Q.
2. If Q has < 3 boundaries, end; else goto Step 2.
3. Compute a geodesic loop γ′ homotopic to γi · γj
4. γ′, γi and γj bound a pants patch, remove this pants
patch from M . Remove γi and γj from Q. Put γ′ into Q.
Go to Step 1.

4. Constructing the Initial Mapping This step has sev-
eral stages: first the pants are decomposed to hyperbolic
hexagons; second, embed the hyperbolic hexagons isomet-
rically to the Poincaré disk, then convert to Klein model;
finally the corresponding hexagons are registered using
Euclidean harmonic maps with consistent boundary con-
straints. The resultant piecewise harmonic mapping is the
initial mapping.

For the first stage, we use the method described in the
theory section to find the shortest path between two bound-
ary loops. Assume a pair of hyperbolic pants M with three
geodesic boundaries {γi, γj , γk}. On the universal cover-
ing space M̃ , γi and γj are lifted to hyperbolic lines, γ̃i
and γ̃j respectively. There are reflections ϕ̃i and ϕ̃j , whose
symmetry axis are γ̃i and γ̃j . Then the axis of the Möbius
transformation γ̃j◦γ̃−1

i corresponds to the shortest geodesic
path τk between γi and γj .

In the second stage, each hyperbolic hexagon on the
Poincaré disk is transformed to a convex hexagon in Klein’s
disk using z → 2z

1+zz̄ . Then a planar harmonic map between
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two corresponding planar hexagons is established by solv-
ing Laplace equation with Dirichlet boundary conditions
[27], wzz̄ ≡ 0. The cut open landmarks were treated as
boundaries and forced to align as boundary condition with
linear interpolation by arc length parameter in this step.

It is well known that if the target mapping domain is
convex, then planar harmonic maps are diffeomorphic [21].
The boundary conditions need to be consistent, such that
the harmonic mappings between hexagons can be glued to-
gether to form a homeomorphic initial mapping. The pro-
cess is visualized in Figure 3.

Figure 3. Constructing the Initial Mapping.

5. Non-linear Heat Diffusion Let (S,g) be a triangle
mesh with hyperbolic metric g. Then for each vertex v ∈ S,
the one ring neighboring faces form a neighborhood Uv , the
union of Uv’s cover the whole mesh, S ⊂

∪
v∈S Uv . Iso-

metrically embed Uv to the Poincaré’s disk ϕv : Uv → H2,
then {(Uv, ϕv)} form a conformal atlas. All the following
computations are carried out on local charts of the confor-
mal atlas. The computational result is independent of the
choice of local parameters.

The initial mapping is diffused to form the hyperbolic
harmonic map. Suppose f : (S1,g1) → (S2,g2) is the
initial map, g1 and g2 are hyperbolic metrics. Compute the
conformal atlases of S1 and S2. Choose local conformal
parameters z and w for S1 and S2, f has local representation
f(z) = w, or simply w(z), then the non-linear diffusion is
given by

w(z, t)

dt
= −[wzz̄ +

ρw(w)

ρ(w)
wzwz̄] (2)

where ρ(w) = (1− ww̄)−2. Suppose vi is chosen to be
a vertex on S1, with local representation zi, after diffusion,
we get the local representation of its image w(zi). Sup-
pose w(zi) is inside a triangular face t(vi) of S2, t(vi) has
three vertices with local representation [wi, wj , wk], then
we compute the complex cross ratio

Algorithm 4 Hyperbolic Heat Diffusion Algorithm.
Input: Two surface models M , N with their hyperbolic
metric CM and CN on Poincaré disk, the one-to-one cor-
respondence (vi, pi) and a threshold ε. Here vi is the ver-
tex of mesh M , pi is the 3D coordinate on mesh N .
Output: A new diffeomorphism (vi, Pi).
1. For each vertex vi of M , embed it’s neighborhood onto
Poincaré disk, in which vi has coordinate zi; do the same
for pi and note it’s coordinate on Poincaré disk as wi.
2. Compute wi(zi,t)

dt using equation (2).
3. Update wi = wi + stepwi(zi,t)

dt .
4. Compute new 3D coordinate Pi on N using the up-
dated wi, and repeat the above process until wi(zi,t)

dt is
less than ε.

η(vi) := [w(zi), wi, wj , wk] =
(w(zi)− wi)(wj − wk)

(w(zi)− wk)(wj − wi)

the image of vi is then represented by the pair [t(vi), η(vi)].
Note that, all the local coordinates transitions in the confor-
mal chart of S1 and S2 are Möbius transformations, and
the cross ration η is invariant under Möbius transforma-
tion, therefore, the representation of the mapping f : vi →
[f(vi), η(vi)] is independent of the choice of local coordi-
nates. Alg. 4 gives the process by steps.

5. Experimental Results
We have implemented our algorithms using generic C++

on Windows platform, with an Open source linear system
solver UMFPACK [9]. All the experiments are conducted
on a laptop computer of Intel Core2 T6500 2.10GHz with
4GB memory.

Input Data We perform the experiments on 24 brain cor-
tical surfaces reconstructed from MRI images. Each cor-
tical surface has about 150k vertices, 300k faces and used
in some prior research [20]. On each cortical surfaces, a
set of 26 landmark curves were manually drawn and val-
idated by neuroanatomists. In our current work, we se-
lected 10 landmark curves, including Central Sulcus, Su-
perior Frontal Sulcus, Inferior Frontal Sulcus, Horizontal
Branch of Sylvian Fissure, Cingulate Sulcus, Supraorbital
Sulcus, Sup. Temporal with Upper Branch, Inferior Tem-
poral Sulcus, Lateral Occipital Sulcus and the boundary of
Unlabeled Subcortcial Region.

Efficiency The whole computation process is fully auto-
matic. The hyperbolic Ricci flow takes about 120 seconds,
the hyperbolic heat diffusion takes about 100 seconds. The
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complexity of pants decomposition and initial mapping con-
struction depends on the number of land marks. In the cur-
rent setting, it takes about 90 seconds.

Registration Visualization Figure 4 we show the visual-
ized registration result of 2 brain models, with one as target
and the other one registered to it. We can see our algorithm
shows a reasonable good result.

Figure 4. First row: source brain surface from front, top and bot-
tom view. Second rows: target brain model. The color on the
models shows the correspondence between source and target. The
balls on the models show the detailed correspondence, as the balls
with the same color are correspondent to each other.

Landmark Curve Variation For brain imaging research,
it is important to achieve consistent local surface matching,
e.g. landmark matching. We adapted a quantitative mea-
sure of curve variation error, which has been used in prior
work [20, 33]. By denoting a specific landmark of sub-
jects, i and j, in the template coordinates as γ{i} and γ{j}.
The Hausdorff distance was then computed for these paired
curves as

d(γ{i}, γ{j}) = 0.5
1

Ni

∑
x∈γ{i}

miny∈γ{j} |x− y|

+0.5
1

Nj

∑
y∈γ{j}

minx∈γ{i} |x− y|
(3)

where Ni and Nj are the number of points on γ{i} and
γ{j}, respectively. |x − y| denotes the Euclidean distance
between points x and y. A curve variation error [20, 33] is
calculated as

V ar =
1

2I(I − 1)

J∑
i=1

I∑
i=1

[d(γ{i}, γ{j})]2

where I is the number of subjects in the study. Lower val-
ues typically indicate better alignment for the curves. As
our method cut landmarks open and force them align as
boundary condition with linear interpolation by arc length
parameter, it achieves exactly zero as the discretization be-
comes finer.

Performance Evaluation and Comparison We compare
our registration method with conventional cortical registra-
tion method based on harmonic mapping with Euclidean
metric [20, 27], where the template surface is conformally
flattened to a planar disk, then the registration is obtained
by a harmonic map from the source cortical surface to the
disk with landmark constraints.

Our experimental results show that by replacing Eu-
clidean metric by hyperbolic metric on the template cortical
surface, the quality of the registrations have been improved
prominently, with a slightly increase of time complexity.

5.1. Diffeomorphism

One of the most important advantages of our registra-
tion algorithm is that it guarantees the mapping between
two surfaces to be diffeomorphic. We randomly choose one
model as template and all others as source to do registra-
tion. For each registration, we compute the Jacobian deter-
minant and measure the area of flipped regions. The ratio
between flipped area to the total area is collected to form
the histogram shown in Fig.5. The horizontal axis shows
the flipped area ratio, the vertical axis shows the number
of registrations. The conventional method (blue bars) pro-
duces a big flipped area ratio, even as much as 9%. In con-
trast, the flipped area ratios for all registrations obtained by
the current method are exactly 0’s.

Figure 5. Flipped area percentage.

5.2. Curvature Maps

One method to evaluate registration accuracy is to com-
pared the alignment of curvature maps between the regis-
tered models [20]. In this paper we calculated curvature
maps using an approximation of mean curvature, which is
the convexity measure. We quantified the effects of registra-
tion on curvature by computing the difference of curvature
maps from the registered models. As Figure 6 shows, we as-
sign each vertex the curvature difference between it’s own
curvature and the curvature of it’s correspondent point on
the target surface, then build a color map.
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We use all 24 data sets for the experiment. First, one
data set is randomly chosen as the template, then all oth-
ers are registered to it. For each registration, we compute
the curvature difference map. Then we compute the aver-
age of 23 curvature difference maps. The average curvature
difference map is color encoded on the template, as shown
in Fig.6. The histogram of the average curvature difference
map is also computed, as shown in Fig.7. It is obvious that
the current registration method produces less curvature er-
rors.

Figure 6. Curvature map difference of previous method (top row)
and our method (bottom row). Color goes from green to red while
the curvature difference increasing.

Figure 7. Average Curvature Map Difference.

5.3. Local Area Distortion

Similarly, we measured the local area distortion in-
duced by the registration. For each point p on the tem-
plate surface, we compute its Jacobian determinant J(p),
and represent the local area distortion function at p as
max{J(p), J−1(p)}. J can be approximated by the ratio
between the areas of a face and its image. Note that, if the
registration is not diffeomorphic, the local area distortion
may go to ∞. Therefore, we add a threshold to truncate
large distortions. Then we compute the average of all local
area distortion functions induced by the 23 registrations on

the template surface. The average local area distortion func-
tion on the template is color encoded as shown in Fig.8,
the histogram is also computed in Fig.9. It can be easily
seen that current registration method greatly reduces the lo-
cal area distortions.

Figure 8. Average Area Distortion. Color goes from green to red
while area distortion increasing.

Figure 9. Average Area Distortion.

6. Conclusion and Future Work
This work introduces a hyperbolic harmonic mapping

based algorithm, which automatically establish diffeomor-
phic surface correspondences between general surfaces.
Our results are bijective while enforcing the landmark curve
matching conditions. To achieve this, the new method
changes the Riemannian metric on the target surface and
greatly improves the registration quality.

In future, we will explore further the general method-
ology of changing the Riemannian metrics to improve
efficiency and efficacy of shape analysis algorithms.
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