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ABSTRACT

Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to understand disease
progression and has implications in decisions concerning treatment strategy. To this end we combine a predic-
tive multi-task machine learning method1 with novel MR-based multivariate morphometric surface map of the
hippocampus2 to predict future cognitive scores of patients. Previous work by Zhou et al.1 has shown that a
multi-task learning framework that performs prediction of all future time points (or tasks) simultaneously can be
used to encode both sparsity as well as temporal smoothness. They showed that this can be used in predicting
cognitive outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-based
baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information
may hold generalized information on brain status, we hypothesized that hippocampus specific information may
be more useful in predictive modeling of AD. To this end, we applied Shi et al.2s recently developed multivariate
tensor-based (mTBM) parametric surface analysis method to extract features from the hippocampal surface. We
show that by combining the power of the multi-task framework with the sensitivity of mTBM features of the
hippocampus surface, we are able to improve significantly improve predictive performance of ADAS cognitive
scores 6, 12, 24, 36 and 48 months from baseline.

Keywords: Alzheimers Disease, Disease Progression, Multi-task learning, fused Lasso, ADAS-Cog, Tensor-based
Morphometry, Hippocampus, Feature Selection

1. INTRODUCTION

Recent work in psychological testing,3 genetic studies,4 magnetic resonance (MR) imaging,5 positron emission
tomography (PET) imaging,6 cerebral spinal fluid (CSF) measurements,7 cardiovascular status8 and others have
yielded tremendous amounts of diagnostic data for diagnosing and staging dementias, especially Alzheimers
disease (AD). Moreover, many of these studies now also include longitudinal information.3,9 This has lead to a
problem often referred to as the curse of dimensionality, where the size (number of dimensions) of the dataset
makes it difficult to do various numerical analysis on the data. This in turn makes it increasingly difficult to draw
consistent conclusions from the dataset. Statistical analysis together with clinical disease models have helped
with determine how the different sets of diagnostic information interacts with one another but they require a
large number of ad hoc assumptions and therefore does not lend itself well to large scale Medical Imaging-based
features. These problems become even more important when trying to use machine learning techniques because
at some point the predictive power of the model ceases to increase even though we’re adding more information
or dimensions. The question is then about how to select the ”correct” features to maximize predictive power.
This paper leverages existing sparsifying machine learning techniques with temporal priors,1 built specifically
for progressive disease models, such as AD, together with multivariate tensor-based morphometric (mTBM)
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features10 of the Hippocampus to try and predict AD progression up to 48 months from the baseline MRI
measurement. The goal is to evaluate the predictive power of mTBM against those of cortical thickness and
other FreeSurfer-based features, demographic information (sex and age) as well as genetic information (ApoE-ε4
Copies).

2. METHODS

2.1 ADNI Data

Data used in the preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public- private
partnership. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimers disease
(AD). Determination of sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and cost of
clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University of
California San Francisco. ADNI is the result of efforts of many co- investigators from a broad range of academic
institutions and private corporations, and subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and
ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people with early or late MCI, and people with



early AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date
information, see www.adni-info.org.

For our experiment we used 616 subjects for M06, 606 for M12, 533 for M24, 364 for M36 and 97 for M48.
90% of the data was used for training and 10% used for testing. The reported results are for 20 different selection
splits of training and testing. More information about the demographics and patient selection is available in
Zhou et al 2013.1

2.2 convex Fused Sparse Group Lasso (cFSGL)

Zhou et al 20131 has proposed a powerful multi-tasked learning technique that incorporates sparsity as well as
temporal smoothing for modeling a progressive disease model. In their formulation, each tasked can be though
of a single forward predictor from baseline measurement to a measurement at a certain future time point. In
their case, they used the ADNI dataset and predicted ADAS cognitive scores 6 months after baseline (M06), 12
months after baseline (M12), 24 months after baseline (M24), 36 months after baseline (M36) and 48 months after
baseline (M48). In our study we aim to use the same ADNI dataset but also incorporate mTBM hippocampus
features and compare it to features used in their study. We also attempt to combine the different feature sets to
try to evaluate the predictive power of each set of features.

The proposed cFSGL can be considered a multi-task regression problem with t time points and from n
subjects each with d features, where {x1, x2, . . . , xn} represents each of the d input features for each subject at
baseline (i.e. xi ∈ IRd). Similarly, {y1, y2, . . . , yN} represents the target cognitive scores for each subject at N
time points (i.e. yi ∈ IRN ). For a single subject (n) each task can be seen as a projection of MR / demographic
/ genetic baseline measurements at t = 0 represented at xn to a future cognitive score measurement at time
t = t1 (e.g. at 48 months) given by yn(t1). We can extend this formulation to a multi-task one by performing



projections of all time points simultaneously. In other words, each set of baseline measurements at t = 0 given
by xn is projected to a vector (IRN with N time points) given by y1. The entire mapping can be summarized as
a linear operation using matrices X and Y . X and Y is formed by arranging the patient feature space row-wise,
each row being xn or yN , and yields a IRn×d X matrix and a IRn×N Y matrix. Since this is a linear model, a
set of weights W (IRd×N ) is trained to map xn to yn or X to Y . To achieve a set of weights that encodes both
sparsity and temporal smoothness. The following cost function is minimized during training.

min
W
‖XW − Y ‖2F + λ1 ‖W‖1 + λ2

∥∥RWT
∥∥
1

+ λ3 ‖W‖2,1 (1)

where ‖W‖1 is the L1-norm or lasso penalty that encodes for sparsity, ‖W‖2,1 =
∑d

i=1

√∑t
j=1W

2
ij is the

group Lasso penalty that encodes for temporal grouping of features,
∥∥RWT

∥∥
1

is the fused lasso penalty, R = HT

and H ∈ IRt×(t−1) where Hij = 1 if i = j, Hij = −1 if i = j+1, and Hij = 0 otherwise that encodes for temporal
smoothness.

2.3 Multivariate Tensor-based Morphometry (mTBM) features

After automatically segmenting hippocampus with FSL11 from brain MR images, we build parametric meshes
to model hippocampal shapes. High-order correspondences between hippocampal surfaces were enforced across
subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of
multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation
analysis.2
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Figure 4: Bar Chart of the rMSE of predictions with and without mTBM features by time point

3. RESULTS

Predictions using mTBM significantly outperform prediction without using mTBM as shown in Figures 1 and
2. Quantitative measures such as nMSE, wR and rMSE show across the board improvements as shown in Table
1 and Figure 4. Average weights for one of the mTBM features across the 20 trials is shown in Figure 3.



4. DISCUSSION AND CONCLUSIONS

By merging fused multi-task learning that encodes temporal smoothing1 together with AD sensitive mTBM
maps of the parametric hippocampus surface2 , we were able to get significant gains in future ADAS cognitive
score prediction. We believe that these results are some of the highest performing predictions based on baseline
data only and is consistent with our survey of other comparable studies.1 Other factors not addressed in
this work is the effect of percentage of data used for training and testing. Previous work1 has shown that
although there would be a decrease in performance measured with a smaller training set, the trends and relative
performance remains comparable. We have also treated the parametric surface data, patient demographics and
MRI volumetric information as one continuous information vector. It would be interesting to see if adding
neighborhood information based on the location on the parametric surface would give us smoother and more
realistic weights on the parametric surface and perhaps even better or more consistent results.

The current study also serves as a illustration of how machine learning methods can be used with whole
parametric surfaces or even volumetric volumes such as in fMRI studies. However, as the number of voxels and
vertex points increase, we again run into problems with the curse of dimensionality. To counter such problems,
sparsifying penalties such as in cFSGL can be employed. However, without a reasonable starting weight, finding
a reasonable solution that has the required sparsity can get computational intensive. One solution that we
intend to explore is the use of stability selection in seeding the initial weights for the algorithm in a hierarchical
approach to learning. We believe that this a reasonable way of leveraging prior information whilst allowing the
algorithm to impose explore ensure temporal smoothness and sparsity.

As this is a model of a epidemiological system, we cannot ignore the investigator’s selection of reasonable
features. Moreover, the performance of the system is as interesting as the weights that yield the predictions.
Our future work includes work in understanding the behavior of the weights across the parametric surface space
as well as in time. Previous work has shown that stability selection may be a good fit for analyzing the feature
weights on the model.

5. FUTURE WORK

Future work including stability analysis of the weights may yield more information about the relationship between
the deformation of hippocampal subfields and other clinical indicators during AD progression.
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