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ABSTRACT
Incomplete data present serious problems when integrating large-
scale brain imaging data sets from different imaging modalities.
In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for
example, over half of the subjects lack cerebrospinal fluid (CSF)
measurements; an independent half of the subjects do not have flu-
orodeoxyglucose positron emission tomography (FDG-PET) scans;
many lack proteomics measurements. Traditionally, subjects with
missing measures are discarded, resulting in a severe loss of avail-
able information. We address this problem by proposing two novel
learning methods where all the samples (with at least one available
data source) can be used. In the first method, we divide our samples
according to the availability of data sources, and we learn shared
sets of features with state-of-the-art sparse learning methods. Our
second method learns a base classifier for each data source inde-
pendently, based on which we represent each source using a single
column of prediction scores; we then estimate the missing predic-
tion scores, which, combined with the existing prediction scores,
are used to build a multi-source fusion model. To illustrate the pro-
posed approaches, we classify patients from the ADNI study into
groups with Alzheimer’s disease (AD), mild cognitive impairment
(MCI) and normal controls, based on the multi-modality data. At
baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 Nor-
mal), have at least one of four data types: magnetic resonance
imaging (MRI), FDG-PET, CSF and proteomics. These data are
used to test our algorithms. Comprehensive experiments show that
our proposed methods yield stable and promising results.
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1. INTRODUCTION
Alzheimer’s disease (AD) is a highly prevalent neurodegenera-

tive disease, and is widely recognized as a major, escalating epi-
demic and a world-wide challenge to global health care systems
[22]. AD is the the most common type of dementia, accounting
for 60-80% of age-related dementia cases. The direct cost of care
for AD patients by family members and healthcare professionals is
more than $100 billion per year; this figure is expected to rise dra-
matically as the population ages over the next several decades [33].
In AD patients, neurons and their connections are progressively de-
stroyed, leading to loss of cognitive function and ultimately death.
The underlying pathology is thought to precede the onset of cogni-
tive symptoms by many years [3, 19]. Efforts are underway to find
early diagnostic markers to evaluate AD risk pre-symptomatically
in a rapid and rigorous way. Such findings will help establish early
interventions to prevent or at least postpone the onset of AD, or
reduce the risk of developing the disease.

Neuroimaging is a powerful tool to measure disease progres-
sion and therapeutic efficacy in AD and mild cognitive impairment
(MCI). Neuroimaging research offers great potential to discover
features that can identify individuals early in the course of dement-
ing illness; several candidate neuroimaging biomarkers have been
examined in recent cross-sectional and longitudinal neuroimaging
studies [9, 12]. Reduced fluorodeoxyglucose (FDG) PET measure-
ments of the cerebral metabolic rate for glucose in brain regions
preferentially affected by AD, structural MRI measures of brain
shrinkage, and cerebrospinal fluid (CSF) measurements are among
the best established biomarkers of AD progression and pathology
[33]. Realizing the importance of combining neuroimaging and ge-
netics, NIH in 2003 funded the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI [29, 20], PI: Michael W. Weiner). The ini-
tiative is facilitating the scientific evaluation of neuroimaging data
including magnetic resonance imaging (MRI), positron emission
tomography (PET), other biomarkers, and clinical and neuropsy-
chological assessments for predicting the onset and progression of
MCI and AD. By identifying more sensitive and specific markers
of very early AD progression, these efforts should make it easier
to diagnose AD earlier as well as develop, assess, and monitor new
treatments.

Clinical and research studies commonly acquire complementary
brain images, neuropsychological and genetic data for each partic-
ipant for a more accurate and rigorous assessment of the disease
status and likelihood of progression. Advances in image analysis
make it possible to use one image modality to support the analysis
of a complementary image modality [17, 6, 18, 23]. However, only
a few systems, e.g., [40, 28, 11, 41, 38, 21, 39, 24, 43], applied
data mining and machine learning techniques such as the multi-
variate linear model and partial least squares to characterize the
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Figure 1: Illustration of integrating multiple heterogeneous
data sources for disease status prediction tasks. More details
on the different data sources and prediction tasks used in this
study may be found in Section 3.

linkage between the patterns of information from the same indi-
vidual’s brain images and other biological measures. Instead, most
researchers perform statistical analysis by analyzing different im-
ages separately. In general, these “unimodal” analysis could be im-
proved by considering other sources of relevant information from
multiple imaging modalities, e.g., PET and MRI, and non-imaging
data sets from genomics and proteomics. It is a common belief
that by integrating multiple heterogeneous sources (as illustrated in
Figure 1), one may not only provide more accurate information on
AD progression and pathology, but also better predict cognitive de-
cline before the onset of illness, or at least in the earliest stages of
disease.

One common problem that hampers the use of multi-modality
imaging approach is the problem of missing data. Missing data
present a special challenge when integrating large-scale biomedi-
cal data. Incomplete data is ubiquitous in real-world biomedical
applications. In ADNI, over half of the subjects lack CSF measure-
ments; an independent half of the subjects do not have FDG-PET;
many lack proteomics measurements. Missing data may be due
to the high cost of certain measures (e.g., PET scans), poor data
quality, dropout of the patients from the study, etc. Some mea-
sures, such as CSF biomarkers, require more invasive procedures
(such as lumbar puncture) which not all study participants are will-
ing to consent to. Some subjects in a longitudinal study may miss
at least one of the regular assessments, or their data quality may
be insufficient for accurate analysis at some time points. The sim-
plest approach removes all samples with missing values, but this
throws away a vast amount of useful information and dramatically
reduces the number of samples in the analysis. As a result, a sub-
ject with incomplete data cannot be studied for classification and
prognosis. Moreover, with this approach, the resource and time de-
voted to those subjects with incomplete data are totally wasted. A
number of previous works acknowledged the challenge of missing
data and discussed general strategies [37, 14, 32]. An alternative
and popular approach is to estimate missing entries based on the
observed values. Many algorithms have been proposed for this [15,
34, 13, 35]. While these methods work well when missing data
are rare, they are less effective when a significant amount of data is
missing, e.g., when all PET features from half of the subjects are
missing. Recently, trace norm minimization has been proposed for
missing data estimation [4, 5]. This can be effective even when a
large amount of data is missing. However, it does assume that the
missing locations are random; it is less effective when a complete
block of the data is missing, e.g., the complete block of all PET
features from half of the subjects. Therefore, computational meth-
ods are needed to integrate heterogeneous data with a block-wise
missing pattern (“block-wise missing” means a large chunk of data
is missing for one or more data sources - an example is shown in
Figure 2). Without such a method, it is quite challenging to build a
highly accurate classifier to process any real multi-modality imag-
ing data sets.

To achieve multi-modality integration while taking into account
the block-wise missing nature of the data, we propose two novel
learning frameworks. Our first system is based on a novel multi-
task sparse learning framework, named incomplete multi-source
feature learning (iMSF). Based on the availability of different fea-
ture sources, we divide the data set into several learning tasks, from
each of which a unique classifier is learned. We then impose a
structural sparse learning regularization onto these tasks, such that
a common set of features is selected among these tasks. Therefore,
we exploit the multi-task nature of the problem and the feature set
is learned jointly among different tasks. In our second system, we
tackle the difficulty of block-wise data completion by proposing a
model score completion scheme (ScoreComp). Each data source is
first treated independently, where a base classifier is learned such
that the data source is converted into a single column consisting of
model prediction scores. Thus, the missing data blocks become sin-
gle missing values in the new representation of the data. Data im-
putation techniques are then applied and a new classifier is learned
on the completed score matrix such that multiple sources are inte-
grated together.

As an illustrative application, we study clinical group (diagnos-
tic) classification problems in the ADNI baseline data set. Com-
prehensive experiments demonstrate the promising and stable per-
formance of the proposed systems. 780 subjects in the ADNI base-
line data set have their diagnosis (AD, MCI or Normal) available
and have at least one type of features available (meaning an image
or related clinical measure), including MRI, FDG-PET, CSF and
proteomics. For the MCI subjects, we further make use of their
4-year follow up diagnosis to divide them into 2 sub-groups. We
label those who had converted to AD by the time of a later visit as
“converter” and those who stayed stable as “non-converter”. We
set out to use these data to solve clinical group classification prob-
lems (AD vs. Normal; AD vs. Non-converter and Converter vs.
Normal). For our experiments, we obtained MRI, CSF and pro-
teomics feature sets from the ADNI web site (http://adni.
loni.ucla.edu/) and we processed FDG-PET data using the
image analysis package, SPM (SPM8, http://www.fil.ion.
ucl.ac.uk/spm) using the statistical region of interest (sROI)
method. Besides our multi-source learning frameworks for incom-
plete data, we also include five other methods to estimate missing
values: (1) the “Zero” method: a method that fills missing values
with zeros; (2) EM: a missing value imputation method based on
the expectation-maximization (EM) algorithm [34]; (3) SVD (sin-
gular value decomposition): a method for matrix completion using
a low rank approximation to the full matrix; (4) KNN: a missing
value imputation method based on the k-nearest neighbor princi-
ple [15]; and (5) SVT: a matrix completion method based on trace
norm minimization [4, 5]. The experimental results show that our
proposed methods are effective for incomplete multi-source data
fusion.

The rest of the paper is organized as follows: in Section 2, we
present two multi-source learning methods for a joint analysis of
multi-modality data with a “block-wise” missing pattern; we have
performed comprehensive experiments to evaluate the proposed meth-
ods and the results are reported in Section 3; finally, we conclude
our paper in Section 4.

2. PROPOSED METHODS
In many applications, multiple data sources may suffer from a

considerable amount of missing data. For example, in the ADNI
data acquisition phase, many subjects lack a subset of measures,
resulting in a scenario shown in Figure 2, where large chunks of
missing data are marked by the white areas. A simple and popular
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Figure 2: Illustration of the “block-wise” pattern of missing
data for the ADNI data set. In this figure, we show AD and
normal control subjects only. For simplicity, we focus on those
subjects with complete MRI measures.

approach is to remove all the subjects with missing values, but this
greatly reduces the number of samples and fails to fully use the
information in the data set. In Figure 2, only 79 subjects (Subjects
61-139) out of a total of 245 subjects do not have missing values.
Next, we present two methods for dealing with multi-source data
with block-wise missing values.

2.1 Proposed Method I: Incomplete Multi-Source
Feature Learning

In our feature learning framework described below, we fully use
the multiple heterogeneous data with a block-wise missing pattern
by exploiting the underlying structure in the multi-source data. Our
proposed framework formulates the prediction problem as a multi-
task learning problem [1, 2, 26] by first decomposing the predic-
tion problem into a set of tasks, one for each combination of data
sources available, and then building the models for all tasks simul-
taneously.

For example, considering a data set with three sources (CSF,
MRI, PET) and assuming all samples have MRI measures, we first
partition the samples into multiple blocks (4 in this case), one for
each combination of data sources available: (1) PET, MRI; (2) PET,
MRI, CSF; (3) MRI, CSF; and (4) MRI. We then build four mod-
els, one for each block of data, resulting in four prediction tasks
(Figure 3).

A simple approach to deal with the missing data is to build these
four models separately, but that does not fully use the informa-
tion in the multi-source data. Indeed, the sample size for each
of these four tasks is even smaller, resulting in the large dimen-
sion small sample size problem. We address this by employing
a joint feature learning formulation. We formulate our proposed
framework as follows. Suppose the data set is divided into m tasks:
T i = {xij , yij}, i = 1 . . .m, j = 1 . . . Ni, where Ni is the number
of subjects in the i-th task, and (xij , y

i
j) is the j-th subject from the

i-th task. For each task, we consider the following linear model:

f i(xj) = (βi)Txij

where βi is the weight vector, including the model parameters for
the i-th task. Denote β = {β1, . . . , βm} as the collection of all
model parameters. Assume that we have a total of S data sources,

and the feature dimensionality of the s-th source is denoted as ps.
For notational convenience, we introduce an index function I(s, k)
as follows: βI(s,k) denotes all the model parameters corresponding
to the k-th feature in the s-th data source. The proposed multi-task
feature learning framework is:

min
β

1

m

m∑
i=1

1

Ni

Ni∑
j=1

L(xij , y
i
j , βi) + λ

S∑
s=1

ps∑
k=1

∥∥βI(s,k)∥∥2 (1)

where L(·) is the loss function, and we adopt the logistic loss in
our study. The second part of the formulation, which is essentially
an `2,1-norm regularization on the model parameters [42], leads to
a solution with the desired sparsity, that is, all models involving a
specific source are constrained to select a common set of features
for this particular source. The proposed formulation is novel as it
(1) formulates the incomplete multi-source fusion as a multi-task
learning problem, and (2) extends existing multi-task feature learn-
ing formulations to accommodate missing feature values.

The regularization parameter λ in (1) controls the sparsity of the
solution. Generally speaking, the larger λ is, the sparser the solu-
tion will be. However, in practice, the same λ value will induce
different sparsity for different data sets. To select a proper range
of parameters, we follow a similar approach as discussed by Liu et
al. [27] to obtain a value λmax for each specific problem such that
if λ ≥ λmax, the optimal solution to (1) is 0. Therefore, we just
need to set a ratio r such that λ = rλmax, and r is selected in the
region (0, 1).

2.1.1 Efficient Optimization
The optimization problem proposed in Section 2.2 is the com-

position of a smooth term and a non-smooth term, which is chal-
lenging to solve. In this paper, we propose to solve it using the
accelerated gradient descent (AGD) method [31, 30] as in [26] be-
cause of its fast convergence rate. Denote the empirical loss as:

`(β) =
1

m

m∑
i=1

1

Ni

Ni∑
j=1

L(xij , y
i
j , βi),

and the non-smooth regularization as:

φλ(β) = λ

S∑
s=1

ps∑
k=1

∥∥βI(s,k)∥∥2 .
In AGD, we first approximate `(β) + φλ(β) by:

fL,β(θ) = `(β) + 〈`′(β), θ − β〉+ θλ(θ) +
L

2
‖θ − β‖2.

In the i-th step, a search point si is computed based on the past so-
lutions of the previous steps by si = βi+ τi(βi−βi−1). Then, the
new solution βi+1 is obtained via the minimization of the model at
the current search point, that is, βi+1 = argminθ fL,si(θ). This
sub-problem is the key component to the optimization, and is of-
ten called the proximal operator [7]. A detailed discussion of how
to solve this sub-problem efficiently is found in our previous work
[26]. By doing so, we successfully bypass the difficulty of comput-
ing the sub-gradient of φλ(·); algorithm details are summarized in
Algorithm 1.

2.2 Proposed Method II: Model Score Com-
pletion

The iMSF framework proposed in Section 2.1 tackles the prob-
lem in a “row-wise” manner by dividing samples into different
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Figure 3: Illustration of the proposed multi-task feature learning framework for incomplete multi-source data fusion. In the proposed
framework, we first partition the samples into multiple blocks (four blocks in this case), one for each combination of data sources
available: (1) PET, MRI; (2) PET, MRI, CSF; (3) MRI, CSF; (4) MRI. We then build four models, one for each block of data,
resulting in four prediction tasks. We use a joint feature learning framework that learns all models simultaneously. Specifically, all
models involving a specific source are constrained to select a common set of features for that particular source.

Algorithm 1 Efficient Optimization for the Multi-Source Feature
Learning Framework
Input: L0, λ, β0, n
Output: βn+1

Initialize β1 = β0, α−1 = 0, α0 = 1, and L = L0

for i = 1 to n do
Set τi =

αi−2−1

αi−1
, si = βi + τi(βi − βi−1)

Find the smallest L = Li−1, 2Li−1, . . . such that `(βi+1) +
φλ(βi+1) ≤ fL,si(βi+1) holds, where

βi+1 = argmin
θ
fL,si(θ)

Set Li = L and αi+1 =
1+
√

1+4α2
i

2
end for

groups. We next propose to tackle the problem in a “column-wise”
manner. From Figure 2 we can observe another characteristic of
this problem: if a certain data source is available for a particular
sample (e.g., PET for subject 1), the complete set of features from
this data source will be available. Intuitively, it is more challeng-
ing to estimate a complete block of missing values than a single
value. This motivates us to design the model score completion
scheme (ScoreComp). The overview of the ScoreComp is illus-
trated in Figure 4. Given an incomplete multi-source data set, we
first train a base model on each individual data source using the
available samples, and the base model is applied to produce predic-
tion scores for the corresponding samples for this data source; thus
each data source is represented by a single column of scores, and
all data sources together are represented as a matrix of prediction
scores with missing values. A missing value estimation method is
then applied to obtain a complete set of model scores, which are
treated as newly derived features to train our final classifier. That
is, the prediction score from each data source is considered as a
feature.

We formally describe our ScoreComp method as follows. Con-
sider a labeled data set {Di,Yi}, i = 1, . . . , N , with S incomplete
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Figure 4: Illustration of the proposed model score completion
scheme. We first train a base model on each individual data
source using the available samples, and the base model is ap-
plied to produce prediction scores for this data source; thus
each data source is represented by a single column of (incom-
plete) scores. A missing value estimation method is applied
to obtain a complete set of model scores, which are treated as
newly derived features to train our final classifier.

data sources. Let the set sc(i) ⊂ {1, . . . , S} denote the available
data sources for the ith subject, such that Di = {Xs

i |s ∈ sc(i)},
where Xs

i is the feature vector of the ith subject from the sth

source. The goal of the ScoreComp method is to derive a com-
pleted prediction score matrix Ã ∈ RN×S from the original data
set. Details are given below:

Base Model Training Step. We first choose a classifier learning
algorithm L, based on which a prediction model is constructed for
each data source:

Ms = L ({(Xs
i ,Yi)|s ∈ sc(i)}) , s = 1, . . . S.

Then, we use these models to construct an incomplete prediction



score matrix Â ∈ RN×S given by:

Âi,s =

{
Ms(X

s
i ) if s ∈ sc(i)

NaN otherwise
,

where Ms(X
s
i ) is the prediction score of model Ms on feature

vector Xs
i .

Missing Value Estimation Step. In this step, we choose a missing
value estimation algorithm E such that Ã = E(Â), where Ã is the
completed prediction score matrix. Ã is then treated as the derived
feature matrix for the original data set {Di,Yi}. The final model
M is learned using (Ã,Y) so that the data sources are integrated.

Prediction of Unlabeled Sample. Suppose we are given a set of
unlabeled data {Uj}, j = 1, . . . ,M , such that Uj = {Xs

j |s ∈
sc(j)}. ScoreComp will first derive a completed feature matrix
B̃ ∈ RM×S , which is then fed intoM for prediction. To obtain B̃,
we first use the models learned in the base model training step to
construct an incomplete model score matrix B̂ ∈ RM×S given by:

B̂j,s =

{
Ms(X

s
j ) if s ∈ sc(j)

NaN otherwise
.

Combining this with the previously obtained complete matrix Ã,
we obtain:

C = E
([
Ã

B̂

])
, C ∈ R(N+M)×S .

Finally, by extracting the lowerM rows of matrixC, we can obtain
the derived feature matrix B̃ for the unlabeled data set.

Like the iMSF method, all available information is used in the in-
tegration process. Note that in ScoreComp, we still estimate miss-
ing values; but instead of estimating blocks of missing data, we
only need to impute the prediction scores. Another advantage of
this framework is its simplicity. No additional parameters are in-
troduced, and one can choose any classification algorithms and/or
missing value estimation method that suit the data set at hand. In
this study, we chose the random forest classifier [25] as the base
model learning algorithm L, and our final model M was trained
using ridge regression. We also tried various missing data estima-
tion methods, and more details may be found in Section 3.

3. EXPERIMENTAL RESULTS
In this section, we report the results of our experiments to eval-

uate the effectiveness of our proposed methods. As noted earlier,
we used all the subjects who had at least one feature type available
among four different data sources including MRI, PET, CSF and
proteomics, and challenge our method with the problem of distin-
guishing AD, MCI and NC subjects from each other. In our binary
classification test scenarios, the relative performances of different
methods are evaluated using several metrics including accuracy,
sensitivity and specificity.

3.1 Subjects
Data used in this paper were obtained from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database (http://adni.
loni.ucla.edu). The ADNI was launched in 2003 by the Na-
tional Institute on Aging (NIA), the National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), the Food and Drug Ad-
ministration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public-private part-
nership. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression of MCI
and AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials.

In terms of data collected at baseline, a total of 822 ADNI par-
ticipants were recruited from 59 sites across the U.S. and Canada.
These including 229 Normal (normal elderly controls), 405 with
MCI, and 188 with AD, ranging in age from 55 to 90 years. Phe-
notype data included structural MRI scans acquired on 1.5T MRI
scanners, and clinical and neuropsychological assessments. Addi-
tional data such as 3-Tesla MRI, FDG-PET, PIB-PET (a PET scan-
ning method using the amyloid-sensitive ligand, Pittsburgh com-
pound B), and fluid biomarkers are available for some subjects as
well. In our experiments, we use pre-processed 1.5 Tesla (T) MRI
imaging features. Besides these data, we were able to include other
subjects who had at least one of three data types available: FDG-
PET, CSF, and/or proteomics. As a result, baseline data from a total
of 780 participants (172 AD, 397 MCI, 211 Normal) were used to
test our algorithms.

The MRI image features in this study were based on the imag-
ing data from the ADNI database processed by the UCSF team,
who performed cortical reconstruction and volumetric segmenta-
tions with the FreeSurfer image analysis suite (http://surfer.
nmr.mgh.harvard.edu/). The processed MRI features come
from a total of 648 subjects (138 AD, 319 MCI and 191 Normal),
and can be grouped into 5 categories: average cortical thickness,
standard deviation in cortical thickness, the volumes of cortical par-
cellations, the volumes of specific white matter parcellations, and
the total surface area of the cortex. There were 305 MRI features
in total. We also downloaded FDG-PET images of 327 subjects
(74 AD, 172 MCI, and 81 Normal) from the ADNI website. With
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), we pro-
cessed these FDG-PET images. We applied Automated Anatomical
Labeling (AAL) [36] to extract each of the 116 anatomical volumes
of interest (AVOI) and derived average image values from each
AVOI, for every subject. Baseline CSF samples were acquired from
416 subjects (102 AD, 200 MCI and 114 Normal) by the ADNI
Biomarker Core laboratory at the University of Pennsylvania Med-
ical Center [36]. In our study, we use 5 measures obtained from
the CSF, including levels of beta amyloid 1-42 (Aβ1−42), tau pro-
tein (Tau), phosphorylated-tau protein 181 (pTau181p) along with
two CSF ratios (Tau/Aβ1−42 and pTau181p/Aβ1−42). The pro-
teomics data set (97 AD, 345 MCI, and 54 Normal) was produced
by the Biomarkers Consortium Project “Use of Targeted Multi-
plex Proteomic Strategies to Identify Plasma-Based Biomarkers in
Alzheimer’s Disease”1 (see URL in footnote). We use 147 mea-
sures from the proteomic data downloaded from the ADNI web
site. As a result, for a subject with all four types of data available, a
total of 573 measures were studied in our classification experiment.
The number of samples from each category corresponding to each
type of feature utilized in this study is summarized in Table 1.

3.2 Comparison of iMSF, ScoreComp and im-
putation methods

In our first set of experiments, we apply our proposed methods
to the full multi-source data set including MRI, PET, proteomics
and CSF for solving clinical group classification problems (AD vs.
Normal; AD vs. Non-converter and Converter vs. Normal). 780
1http://adni.loni.ucla.edu/wp-content/
uploads/2010/11/BC_Plasma_Proteomics_Data_
Primer.pdf



Table 1: The number of available samples and features used in
this study.

MRI PET CSF Proteomics
# of AD Subjects 138 74 102 97
# of MCI Subjects 319 172 200 345
# of Normal Subjects 191 81 114 54
# of Features 305 116 5 147

subjects were analyzed. Among them, each subject has at least
one of the four data sources (MRI, FDG-PET, CSF and proteomics
features) available. We first randomly select a portion (from 50%
to 75%) of samples as the training set to learn the model, and then
apply the model to predict the labels on the remaining data, used as
a non-overlapping test set. We repeated this process 30 times; the
average performance is reported.

For comparison purposes, we included the following missing
value estimation methods:

Zero: this is the most intuitive way to impute missing values -
we assign zero to any element that is missing. When the data set is
first normalized to have zero mean and unit standard deviation, this
is equivalent to mean value imputation.

KNN: missing value imputation using the k-nearest neighbor
method [15]. The KNN method replaces the missing value in the
data matrix with the corresponding value from the nearest column.
That is to say, KNN will first identify the most similar feature to
the current one with a missing value, and then use this feature as a
guess for the missing one.

EM: this method imputes missing values using the expectation-
maximization (EM) algorithm [34]. An iteration of the EM algo-
rithm includes two steps. In the E step, we estimate the mean and
covariance matrix from the data matrix (with missing values filled
with guesses from previous M step, or initialized as zeros); then in
the M step, the missing value of each data column is filled in with
their conditional expectation values based on the available values
and the estimated mean and the covariance. We then re-estimate
the mean and the variance based on the new estimates, therefore
entering the next EM iteration.

SVD: this is a standard method for matrix completion based on
a low rank approximation. The SVD based estimation works in a
similar way to the EM method above. We first provide some initial
guesses (such as 0) to the missing data values, and then we apply
singular value decomposition (SVD) to obtain a low-rank approxi-
mation of the filled-in matrix. Next, we update the missing values
using their corresponding values in the low-rank estimation. Fi-
nally, we apply SVD to the updated matrix again and the process is
repeated until convergence.

SVT: Recently, trace norm minimization has been proposed for
missing data estimation [4, 5]. This can be effective even when a
large amount of data is missing. Therefore, it will be interesting to
see how this algorithm (singular value thresholding or SVT) per-
forms in our particular setting. We acquire the SVT program on-
line (http://svt.stanford.edu) and follow their sugges-
tions for parameter setting.

The classification results are summarized in Table 2. For our
proposed iMSF method, five ratios (0.001, 0.01, 0.1, 0.2 and 0.4)
were used for the regularization parameter λ. We first run our iMSF
method to learn a set of features for each different task, and then
train a random forest classifier [25] on each learning task using
the selected features. The best and average performance obtained
using these five ratios are reported in Table 2, as “iMSF-Best”
and “iMSF-Average” respectively. For the proposed ScoreComp

scheme, we first use random forest to obtain the prediction score
for the incomplete data set, and apply three different missing value
estimation methods (Zero, EM and KNN) to obtain the completed
score matrix. Then, ridge regression is applied to integrate the data
sources together. The performance using three different missing
value estimation methods is reported in Table 2 as “ScoreComp-
Zero”, “ScoreComp-EM” and “ScoreComp-KNN” respectively.

From Table 2, we can observe that for the AD vs. Normal prob-
lem, our ScoreComp performs best, with about 90% accuracy. The
top 2 methods in terms of performance are “ScoreComp-EM” and
“ScoreComp-KNN” in all training ratios, and they tend to produce
comparable results. The AD vs. Normal problem is considered to
be less challenging, and this might explain why its simplicity may
give ScoreComp method an edge over iMSF.

In the more challenging settings where MCI subjects are in-
volved, we obtain low sensitivity in the AD vs. Non-converter case
and low specificity in the Converter vs. Normal case. In these
settings, iMSF performs much better – it provides more balanced
classification results on both the positive and negative classes. For
example, in the Converter vs. Normal problem, using 75% of data
for training, missing value estimation based methods only achieve
about 70% specificity, but our proposed iMSF achieves an aver-
age of 89% among the five different parameters. Therefore, even
though ScoreComp achieves a higher accuracy in the AD vs. Non-
converter case, we still consider iMSF as the best method for these
settings. This may be due to the fact that our iMSF algorithm took a
more systematic approach in using multiple sources of information
for classification. A detailed comparison with published results us-
ing the ADNI data set may be found in the Discussion section.

Among different variations of the ScoreComp method illustrated
in Table 2, “ScoreComp-EM” and “ScoreComp-KNN” produce more
stable results than “ScoreComp-Zero”, where the missing scores
are substituted with zeros. For example, in the AD vs. Non-converter
case, all three variations yield comparable performance, while in
the Converter vs. Normal case, “ScoreComp-Zero” yields much
lower specificity. We can conclude that in the missing value es-
timation step of our ScoreComp method, an effective algorithm
can indeed enhance the classification performance by using the
model scores from other samples. Interestingly, the five other dif-
ferent missing value estimation methods (Zero, EM, KNN, SVD
and SVT) perform comparably to each other. Thus, estimating the
block-wise missing values directly does not give much edge over
simply substituting missing elements with zeros. This further jus-
tifies the effectiveness of our ScoreComp method.

3.3 Comparison with single source classifica-
tion

Though it is a common belief that by integrating multiple hetero-
geneous sources, one can predict AD progression more accurately,
it is still interesting to see how much we improve classification per-
formance by using multi-modality data. Therefore, we extract the
648 subjects that have MRI features available (with complete data),
and perform leave-one-out classification on the same problems we
discussed before. We then extract the classification results for the
same 648 subjects from our proposed methods, so that the compar-
ison can be made using the same sample pool. Results are summa-
rized in Table 3.

As we see in Table 3, using multiple data sources greatly im-
proves the performance in each case. This is because we not only
learn from additional information from the current sample (when
data sources other than MRI are available), but we also use the in-
formation from other samples that are thrown away in the unimodal
case.



Table 2: Classification performance comparison of the proposed iMSF, ScoreComp and missing value estimation methods (Zero,
EM, KNN, SVD and SVT) in terms of accuracy, sensitivity and specificity when the training percentage varies from 50% to 75%.

AD vs. Normal AD vs. Non-converter Converter vs. Normal
Training Size 50% Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
iMSF-Best 86.37% 85.64% 87.65% 78.05% 57.34% 89.91% 91.20% 94.11% 89.59%
iMSF-Average 83.00% 81.56% 84.80% 77.51% 55.97% 88.64% 90.34% 93.31% 84.18%
ScoreComp-Zero 87.31% 87.61% 87.35% 81.25% 53.26% 95.68% 83.15% 99.32% 48.12%
ScoreComp-EM 89.74% 94.13% 85.32% 81.05% 53.35% 95.31% 88.99% 98.73% 68.30%
ScoreComp-KNN 90.13% 94.87% 85.37% 81.46% 56.02% 94.58% 87.60% 98.89% 63.49%
Zero 85.38% 87.74% 83.23% 77.25% 44.10% 94.14% 89.48% 97.93% 71.36%
EM 87.20% 88.76% 85.75% 78.11% 47.25% 93.80% 89.40% 97.97% 70.95%
KNN 85.79% 88.10% 83.66% 75.15% 36.78% 94.59% 86.40% 97.88% 61.41%
SVD 83.89% 84.94% 82.96% 75.73% 43.00% 92.37% 87.57% 97.09% 67.07%
SVT 55.75% 61.31% 50.70% 81.15% 56.82% 93.48% 71.69% 87.81% 36.34%
Training Size 66.7% Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
iMSF-Best 88.77% 86.77% 91.25% 80.55% 65.83% 89.03% 93.17% 95.36% 90.52%
iMSF-Average 86.07% 83.23% 89.23% 80.12% 63.70% 88.16% 92.40% 94.72% 87.37%
ScoreComp-Zero 88.18% 86.48% 90.10% 83.48% 59.90% 94.96% 84.48% 99.53% 50.13%
ScoreComp-EM 90.28% 93.64% 86.61% 83.25% 60.85% 94.12% 90.82% 99.16% 72.07%
ScoreComp-KNN 90.19% 94.48% 85.51% 83.30% 62.25% 93.56% 89.56% 99.24% 67.66%
Zero 86.79% 88.80% 84.61% 80.87% 52.21% 94.56% 92.30% 98.84% 77.32%
EM 88.46% 88.40% 88.52% 80.90% 53.28% 93.96% 91.69% 98.76% 75.75%
KNN 87.20% 87.60% 86.75% 78.46% 44.24% 94.75% 89.07% 98.68% 66.84%
SVD 85.25% 85.19% 85.36% 78.52% 48.89% 92.51% 90.44% 98.13% 72.75%
SVT 57.14% 61.08% 53.39% 83.25% 60.71% 94.01% 75.30% 91.66% 38.03%
Training Size 75% Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
iMSF-Best 88.79% 87.16% 90.92% 81.33% 66.02% 89.06% 93.19% 95.94% 90.58%
iMSF-Average 85.81% 82.77% 89.38% 80.78% 65.20% 88.70% 92.98% 95.03% 88.87%
ScoreComp-Zero 88.53% 87.67% 89.75% 84.51% 61.48% 96.00% 84.96% 99.60% 52.74%
ScoreComp-EM 89.91% 92.97% 86.77% 83.80% 61.24% 94.95% 89.93% 99.30% 70.21%
ScoreComp-KNN 90.35% 93.89% 86.74% 84.35% 63.79% 94.60% 88.89% 99.11% 66.91%
Zero 86.49% 88.06% 85.13% 81.76% 55.54% 94.74% 91.48% 97.68% 78.49%
EM 88.96% 88.54% 89.54% 81.25% 55.72% 93.83% 90.74% 98.44% 74.38%
KNN 87.32% 88.20% 86.66% 77.73% 44.97% 93.66% 88.89% 98.43% 68.12%
SVD 85.93% 85.78% 86.23% 78.55% 50.13% 92.29% 89.19% 97.48% 70.92%
SVT 56.58% 59.38% 53.73% 81.92% 56.93% 94.17% 75.56% 90.23% 42.59%

Table 3: Classification comparison of using multi-modality data (iMSF and ScoreComp) and just using MRI data. The classification
is performed on the same set of samples, so that a fair comparison can be made. Leave-one-out is used and the accuracy, sensitivity
and specificity are reported.

AD vs. Normal AD vs. Non-converter Converter vs. Normal
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Baseline 86.45% 83.33% 89.36% 76.83% 50.60% 89.20% 85.80% 96.49% 60.42%
iMSF-Average 90.99% 90.28% 91.76% 77.84% 69.44% 83.84% 92.59% 94.34% 89.29%
ScoreComp-EM 90.82% 94.37% 87.02% 82.24% 63.89% 95.36% 90.66% 99.06% 71.43%

3.4 Comparison with methods that throw out
missing data

An intrinsic advantage of our methods over throwing out missing
data is that no sample will be wasted. The final learned model will
benefit from all the samples, so long as at least one of the data
sources is available. Also, unlike the one learned from a complete
data set, our final model will be able to give a prediction for a newly
arrived sample with any combination of the data sources. Still, it
is interesting to investigate if this additional information can help
improve the classification performance. Therefore, we extract the
complete data set where each sample has all the four data sources
(MRI, CSF, PET and proteomics) available. We then extract the
classification results for the same 153 subjects from our methods
(iMSF and ScoreComp), so that the comparison can be made using
the same sample pool. Results are summarized in Table 4.

As we see in Table 4, using 153 subjects alone (about 20% of the
780 subjects we use) results in unsatisfactory performance. We can
conclude that our method not only makes full use of the information
available, but also greatly improves classification performance.

3.5 Effects of different λ ratios in the proposed
iMSF

From Table 2, we can observe that in terms of classification per-
formance, our iMSF method is not very sensitive to the parame-
ter λ. Here we use a particular example to illustrate how the re-
sults vary when different λ ratios are chosen in our proposed iMSF
method in Figure 5. We use the AD vs. Normal problem, and re-
port leave-one-out results when we use different choices of λ ratio
values (0.001, 0.01, 0.1, 0.2 and 0.4). As we can observe from the
figure, as we increase λ, the number of features selected will grad-
ually decrease, from about 25% of the features to 3%. This shows
that by using a λ ratio instead of actual values, it is much easier to
choose a range of parameters that lead to desired levels of sparsity.
We can also observe that the best choice of λ lies in the middle of
the region (in this example 0.2), but the performance is not very
sensitive to the parameter.

4. DISCUSSION
This paper has two major contributions. First, we were able



Table 4: Classification comparison of using multi-modality data (iMSF and ScoreComp) and using the complete MRI + CSF + PET
+ Proteomics data. Classification is performed on the same set of samples, so that a fair comparison can be made. Leave-one-out is
used and the accuracy, sensitivity and specificity are reported.

AD vs. Normal AD vs. Non-converter Converter vs. Normal
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Baseline 87.72% 100.00% 63.16% 76.19% 65.79% 84.78% 83.02% 97.06% 57.89%
iMSF-Average 95.79% 97.37% 92.63% 84.05% 79.47% 87.83% 88.68% 90.59% 85.26%
ScoreComp-EM 98.25% 97.37% 100.00% 83.33% 65.79% 97.83% 84.91% 97.06% 63.16%
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Figure 5: Illustration of the results obtained using different λ
ratio values in our proposed iMSF method. We vary the λ ratio
values from 0.001 to 0.4 (x-axis) and report the accuracy ob-
tained (y-axis) in the left figure. In the right figure, we report
the proportion of selected features (Sparsity, y-axis) when we
increase λ ratio values from 0.001 to 0.4 (x-axis).

to use a large multi-modal data set for classification, even when
large segments of the data were missing. Secondly, we propose
two different multi-source learning schemes for block-wise incom-
plete data, and used them to construct automatic, robust classifiers.
In our experiments, our systems greatly improved the classification
accuracy on the ADNI data set. Our method (iMSF) has two major
advantages: 1) All subjects, so long as at least one of the feature
sources is available, can be used for feature learning, and all of
them can contribute to the feature selection jointly; 2) the difficulty
of guessing unknowns is bypassed, as the feature learning is only
based on what data is available. To the best of our knowledge, in
the ADNI data set, we are the first group who tried to utilize all
the available information for classification by allowing the use of
subjects with incomplete data. In our current pilot work, we as-
sessed whether our multi-source learning models help to boost the
statistical power in the whole data set. Except for some of the PET
imaging measures (such as Pittsburgh compound B), we used all
other measures that are publicly available at ADNI web site. We
hope our work will increase interest in this important problem and
that other groups might consider using this approach (not throwing
out data) when performing future ADNI classification studies.

Pioneering work has been done on the automated diagnosis prob-
lem using the ADNI data set. López et al. (1995) applied principal
component analysis to extract features from FDG-PET. In a data set
of 211 subjects (53 AD, 114 MCI and 52 Normal), they achieved
a best leave one out (LOO) accuracy 82% for classifying people
into groups of AD vs. Normal and a best LOO accuracy of 81% on
MCI vs. Normal. Cuingnet et al. [8] evaluated the performance of
ten high dimensional classification methods using the ADNI MRI
data. In their data set of 509 subjects, the best of the ten classifiers
achieved 81%/95%, 65%/94% sensitivity/specificity for classifica-
tion of AD vs. Normal, MCI vs. Normal, respectively. In our ear-
lier work [21], we used support vector machines to combine several
MRI measures, as well as PET and CSF biomarkers, etc. and we
achieved a 90% LOO accuracy on AD vs. Normal and a 75% LOO

accuracy on MCI vs. Normal classification. Notably, all of these
studies were applied to a subset of the full available ADNI data
used here. For example, in [21], 635 subjects were studied when
only MRI-based measures were needed, but when both CSF and
PET were also added to the set of predictors, the available sample
size dropped dramatically to 166 subjects. Without a method to in-
clude subjects with missing data, it becomes quite difficult to train
and test a classifier. The approach we outlined here still achieved
comparable or better results than those in prior papers.

There are several possibilities for extending our current work. In
this paper, we used numerical summary measures from MRI scans
of 648 subjects, whose data were available at ADNI data set. In
some of our earlier studies [16], we used tensor-based morphom-
etry to study baseline and longitudinal MRI scans in ADNI, and
these could be added to the feature set in the future. In addition,
the second phase of the ADNI initiative is now collecting data
from diffusion tensor imaging, arterial spin labeling, and resting
state functional MRI. Although each of these features is likely to
help with classification and for predicting decline, the 3 new imag-
ing modalities will not all be performed on the same subjects - in
fact, each of the ADNI subjects will be scanned using only one of
the 3 additional modalities, because it was not feasible to prolong
the scanning session to include all three in every subject. Such a
situation lends itself to the data mining and machine learning ap-
proach developed here, as there will be considerable joint informa-
tion available about the relationships between the new modalities
and the traditional biomarkers, but not in the same subjects. Also,
ensemble learning [10] can boost performance in general data min-
ing and machine learning problems. By combining various models
produced with different parameters, or even models from different
methods, the ensemble method may produce even more stable and
robust classifiers. In the future, we plan to enrich our model set and
use ensemble method to tackle the incomplete data problem.
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