

An Isometry-Invariant Descriptor for Detection of **Brain Surface Deformation Affected by Alzheimer's Disease**

Liang Mi^{1,3}*, Zhengyu Su²*, Xianfeng Gu², Yalin Wang^{1,3} 1. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University 2. Department of Computer Science, Stony Brook University 3. Arizona Alzheimer's Consortium, Phoenix, AZ, USA. {liangmi, ylwang}@asu.edu, {zhsu, gu}@cs.stonybrook.edu

Introduction

This poster represents our recent work on encoding the area and angle changes on brain surface deformation. It is based on a novel area-preserving mapping and Beltrami coefficient [1]. Experiment results have demonstrated the efficacy and efficiency of our method on selecting the most affected brain functional areas by Alzheimer's disease (AD).

Methodology

1. Area-preserving mapping

There is a unique conformal mapping between a simply connected surface S and a unit disk **D**, such that the Riemannian metic is:

$$g = e^{2\lambda} \left(dx^2 + dy^2 \right)$$

On **D**, the conformal factor defines a measure:

$$\mu = e^{2\lambda} dx dy$$

Then there exists a unique Brenier mapping:

$$\tau: (D, dxdy) \to (D, \mu)$$

Thus, the composition mapping,

$$\tau^{-1} \circ \phi : S \longrightarrow D$$

is an area-preserving mapping. 2. Isometry Invariant Shape Descriptor The distortion of a surface is

$$K = \frac{1 + |\nu|}{1 - |\nu|}$$

where v is the Beltrami coefficient, which contains rich information of surface deformation. In our work, we compute the area-preserving mapping and angle preserving mapping and use Beltrami coefficient to measure the difference between the two mapping results.

Experiments and Results

(angle preserving) mapping of the brain surfaces. to construct the feature set.

with the highest norm of the Beltrami coefficient.

most affected by AD, as shown below.

