
Combining Thickness Information with Surface
Tensor-based Morphometry for the 3D

Statistical Analysis of the Corpus Callosum

Liang Xua, Olivier Collignond, Gang Wanga,e, Yue Kangc, Franco Leporéf ,
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Abstract. We propose a novel framework to capture a complete set of
3D morphological differences in the corpus callosum (CC) between two
groups of subjects. The CCs are segmented from whole brain T1-weighted
magnetic resonance images and modeled as 3D tetrahedral meshes. The
callosal surface is divided into superior and inferior patches on which we
compute a volumetric harmonic field by solving the Laplace’s equation
with Dirichlet boundary conditions. We adopt a refined tetrahedral mesh
to compute the Laplacian operator, so our computation can achieve sub-
voxel accuracy. Thickness is estimated by tracing the streamlines in the
harmonic field. We combine areal changes found using surface tensor-
based morphometry and thickness information into a vector at each ver-
tex to be used as a metric for the statistical analysis. Group differences
are assessed on this combined measure through Hotelling’s T 2 test. The
method is applied to statistically compare three groups consisting of:
congenitally blind (CB), late blind (LB; onset > 8 years old) and sighted
(SC) subjects. Our results reveal significant differences in several regions
of the CC between both blind groups and the sighted group, and to a
lesser extent between the LB and CB groups. These results demonstrate
the crucial role of visual deprivation during the developmental period in
reshaping the structural architecture of the CC.

1 Introduction

The corpus callosum (CC) is one of the most highly studied subcortical structure
in post-processing analyses of magnetic resonance images. This is in part due to
its involvement in numerous disorders that affect the brain. The splenium of the
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CC carries fibers that connect visuo-spatial areas of the brain, and the isthmus
is also involved in visuo-spatial processing, as it contains fibers connecting the
posterior parietal areas, which fuse multimodality sensory information [1]. The
CC undergoes extensive myelinization during development until adolescence, and
waves of peak growth rates can be observed in the CC’s of children of different
ages [2]. Hence, studying the respective impact of congenitally (CB) versus lately
acquired blindness (LB) on the anatomy of the CC provides a unique model to
probe how experience at different developmental periods shapes the structural
organization of the brain.

On the processing side, in T1-weighted magnetic resonance images (MRI),
its high contrast difference from surrounding structures make accurate callosal
segmentations straightforward for both manual and automatic methods. Addi-
tionally, its functional differentiation along an elongated sagittal axis has allowed
researchers to focus on 2D analysis of the mid-sagittal section, allowing for sim-
pler and faster numerical tools. Even so, it is clear that a 3D structural analysis
can help visualization and may pick up some important information about the
3D structure of the CC that is discarded by 2D process.

We propose a novel 3D pipeline for the 3D analysis of the CC. While most
studies have focussed on 2D representations of this structure, Wang et al. [3]
compared the 3D CC of premature neonates to that of term-born controls. In
that work, a surface grid was generated on the CC, and callosal thickness was
computed as the distance from a medial axis. Statistical significance was as-
sessed at each vertex on a vector containing the thickness and the deformation
tensors from a multivariate tensor-based morphometry analysis (mTBM). The
deformation tensors represent changes in area on the surface. However, for con-
cave callosal surfaces, the medial axis is not well-defined and does not always
have a biologically meaningful interpretation. Here we propose a new thickness
computation to be combined with the standard mTBM analysis as in [3]. Given
3D tetrahedral meshes of the CC, we use the mesh based Laplacian operator
to compute a harmonic field. The thickness is computed from the streamlines
of the harmonic field. The estimated callosal thickness is well-defined, and may
reflect the intrinsic 3D geometrical structure better than thickness derived from
a medial axis and facilitate consistent cross-subject comparisons.

In the field of computational anatomy, tensor-based morphometry (TBM) [4,
5] and more recently its multivariate extension, mTBM [6, 7], have been used ex-
tensively to detect regional differences in surface and volume brain morphology
between groups of subjects. Here we focus more specifically on mTBM on the
callosal surface. Prior work [6] combining mTBM with other statistics such as the
radial distance has significantly improved statistical power. Intuitively, thickness
and mTBM are complementary, as thickness describes distances roughly along
the surface’s normal direction, while mTBM detects surface dissimilarities, in-
cluding differences in the surface metric tensor induced by the particular surface
parameterization. So we argue that a combination of thickness and mTBM will
offer a more complete set of surface statistics for callosal morphometry and hy-
pothesize that they may boost statistical power to detect disease effects.
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In this paper, we propose a combined multivariate morphometry statistics
to study callosal differences associated with congenital-onset versus late-onset
blindness. Our pipeline is applied on a data set consisting of: 14 congenitally
blind (CB), 10 late blind (LB; onset > 8 years old) and 20 sighted control (SC)
subjects. Prior 2D TBM analyses of the corpus callosum [7] revealed reductions
in the ithmus and the splenium of the corpus callosum in early but not late blind
compared to sighted controls. Comparisons of the early and late blind groups
did not find any significant changes, though we hypothesize that they may be
detected by our more powerful method. Additionally, [7] observed changes in the
frontal lobes, though those were not reflected in the 2D analyses of the callosal
regions connecting areas of the frontal lobes.

There are three main contributions in this paper. First, we propose an effi-
cient method to compute the harmonic field with a tetrahedral mesh. Prior work
on voxel-based brain thickness analysis [8, 9] relied on a three-dimensional cubic
voxel grid to solve partial differential equations (PDE) in the potential field.
However, due to the restrictions on the grid resolution which cannot precisely
characterize the curved cortical surfaces in MR images, the measurement accu-
racy from this method is low and sensitive to noise. Our approach overcomes
the defect of the limited grid resolution by adopting a high quality, adaptive
tetrahedral mesh [10] and a finite element based Laplacian operator [11]. Com-
pared with prior work [8, 9], our PDE solving computation can achieve sub-voxel
accuracy. Second, we propose a multivariate statistics by combining the callosal
thickness computed from our new method and mTBM. Lastly, through multiple
comparison, we identify statistically significant areas on CC between the CB and
LB groups. This discovery may help further our understanding of brain plasticity
and in the long term, improve the effectiveness of rehabilitation techniques for
blind individuals.

2 3D Callosal Thickness Computation with Harmonic
Field

2.1 Solving Laplace’s Equation with Volumetric Laplacian
Operators

Laplace’s equation ∆f = ∇2f = 0 in 3D Cartesian coordinates takes the form:

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)f(x, y, z) = 0.

f is called harmonic if it satisfies the Laplace’s equation with Dirichlet boundary
conditions. The computed function is called the harmonic field. Assume there
are two boundaries, B0 and B1, the harmonic field is computed by solving for
the harmonic function fM : M → R, such that∆fM (p) = 0 ∀p ̸∈ B0 ∪B1

fM (p) = 0 ∀p ∈ B0

fM (p) = 1 ∀p ∈ B1

(1)
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Eqn. 1 has been used to estimate the thickness of cerebral cortex [8, 12–
14] and CC thickness on the mid-sagittal section [9]. Here we propose a finite
element approach to solve Eqn. 1 and achieve sub-voxel accuracy on the bound-
aries. Compared with prior voxel-based scheme [8, 9, 12–14], our new work may
overcome the numerical inaccuracy due to the limited resolution of 3D grid.

Practically, we use tetrahedra to represent the volume data. Suppose K is a
simplicial complex, and g : |K| → R3 a function that embeds |K| in R3, then
(K, g) is called a mesh. For a 3-simplex, it is a tetrahedral mesh, Te, and for
a 2-simplex, it is a triangular mesh, Tr. Clearly, the boundary of a tetrahedral
mesh is a triangular mesh, Tr = ∂Te.

Since the conventional harmonic energy is equivalent to the discrete har-
monic energy [11] on a mesh, one may use the discrete Laplacian operator to
minimize the harmonic energy. Here we adopt the Laplacian operator defined
with tetrahedral mesh [11], as well as the following definitions.

Definition 1. Suppose that edge {u, v} is shared by n tetrahedra; thus it lies
against n dihedral angles, θi, i = 1, . . . , n. Denote li as the length of each edge
that edge {u, v} lies against in the domain manifold M , one can define the pa-
rameters ku,v = 1

12

∑n
i=1 li cot(θi).

Definition 2. The piecewise Laplacian is the linear operator ∆PL : CPL →
CPL on the space of piecewise linear functions on K, defined by the formula
∆PL(f) =

∑
{u,v}∈K k(u, v)(f(v)− f(u)).

Definition 3. Given a tetrahedral mesh, the graph weight matrix is defined as

Su,v =

{
ku,v ∃eu,v
0 ¬∃eu,v

, where ku,v is defined in Definition 2 [11]. Clearly, S is a

sparse matrix and can be decomposed as S =

(
WV V WV ∂V

W∂V V W∂V ∂V

)
, where V and

∂V represent the set of internal vertices and boundary vertices, respectively.

Definition 4. Under Dirichlet boundary conditions, the Laplacian matrix is
Lp = DV V + DV ∂V − SV V , where the diagonal matrix DV ∂V = diag(SV ∂V ei),
ei is the ith column vector in an identity matrix, i.e., (DV ∂V )ii = the sum of
i-th row in WV ∂V .

Definition 5. With the discrete Laplacian operator definition, we compute the
harmonic field with Dirichlet boundary conditions,

Lpx = c, (2)

where x is a |u| × 1 vector (|u| is the number of internal vertices). Note x only
contains unknown function values on internal vertices, i.e. WV V , as shown in
the definition of Lp; and constant vector c is computed by cu = fT

l W∂V V =
Σ[v,w]∈Mflkv,w, where fl is the specified function value on boundary vertices.

2.2 Thickness Profile Generation with the Harmonic Fields

Eqn. 2 is the discretized version of Eqn. 1. After computing the harmonic field
f by solving x for internal vertices in Eqn. 2, we can compute the streamlines
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to connect the two surfaces [8, 9]. Computationally, we construct a streamline as
a parametric curves u(s) with arc length parameter s. The thickness is defined
as the total arc length of the streamline that traverses the CC from superior to
inferior (or, alternatively, from inferior to superior) patches. Formally, we solve
the following ordinary differential equation to construct the streamlines:{

u′(s) = ± ∇f(u(s))
|∇f(u(s))|

u(0) = x
(3)

where x is a point on the starting surface patch and the streamline stops when
it intersects the other surface patch. u′ takes different sign based on the starting
surface patch. Solving for Eqn. 1 using B0 as either the superior or inferior
surface, and B1 as the other surface, we can compute the thickness at each point
on superior and inferior surfaces, respectively.

3 Multivariate Morphometric Feature Computation

Alg. 1 and Fig. 1 illustrate the algorithm pipeline of our multivariate morphom-
etry computation. In the following, we explain each step in details.

Step 1. Tetrahedral mesh and triangular mesh generation. Our meshes are gener-
ated by an adaptively sized tetrahedral mesh modeling method [10]. The method
produces meshes conforming to the voxelized regions in the image by minimiz-
ing an energy function consisting of a smoothing term, a fidelity term and an
elasticity term. Fig. 1(a) shows the binary image of a segmented corpus collosum
and (b) shows its tetrahedral mesh. The boundary of the tetrahedral mesh gives
a surface triangular mesh for the callosal surface (Fig. 1(c)).

Step 2. Surface registration and surface decomposition. The goal is to register CC
surfaces and decompose them into two boundaries for thickness analysis. Given
the long and thin structure of a CC surface, existing area-preserving spherical
mapping based subcortical algorithms [15] may produce much distortion. For an
accurate surface registration and decomposition, we adopt a holomorphic 1-form
based method [6]. First, given a callosal surface, we label two consistent land-
mark curves at the caudal and rostral endpoints. They are biologically valid and
consistent landmarks across subjects as shown in Fig. 1(d) (yellow lines). We
call this process topological optimization. Given the callosal horizonal tube-like
shape, these landmarks curves can be automatically detected by checking the
extreme points along the first principal direction of the geometric moments of
the surface. Secondly, we conformally map the callosal surface onto a rectangular
planar domain with a holomorphic 1-form based conformal parameterization al-
gorithm as in [6]. Fig. 1(e) illustrates the conformal parameterization by texture
mapping the checkboard back to the surface. Finally, given two callosal surfaces
S1 and S2 and their parameterizations, τ1 : S1 → R2 and τ2 : S2 → R2, we find
a harmonic map τ : R2 → R2 between the parameter domains, such that:

τ ◦ τ1(S1) = τ2(S2), τ ◦ τ1(∂S1) = τ2(∂S2),∆τ = 0.
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Algorithm 1 Multivariate Morphometry of 3D Corpus Callosum.

Input: Binary image of segmented corpus callosum
Output: Morphometry features for each boundary vertex, including thickness and
deformation tensors.
1. Build tetrahedral mesh from the binary image; build triangular mesh by computing
the boundary of the tetrahedral mesh;
2. Register surfaces via holomorphic 1-form method [6]; decompose a surface into
superior and inferior patches by tracing iso-parametric curves;
3. Compute callosal thickness using the harmonic field;
4. Compute deformation tensors; construct the multivariate morphometry features
by combining mTBM and thickness feature.

On the registered surfaces, we generate two iso-parametric curves which pass
the extreme points on two lateral sides. By cutting along these two curves and
removing their attached triangles (also the tetrahedra in the tetrahedral mesh),
we produce superior and inferior surface patches, which are used for the callosal
thickness computation. (Fig. 1(f) shows the segmented superior and inferior
surface patches (superior patch in blue and inferior patch in yellow).

Step 3. Callosal thickness computation. Similar to prior CC morphometric ap-
proaches with 2D Laplace’s equations [9, 16], our approach computes the 3D
Laplace’s equation with an efficient discrete Laplacian operator. The details of
the algorithm is described in Sec. 2. Fig. 1(g) shows how to compute the stream-
lines from the harmonic fields. We generate level set surfaces of the harmonic
fields and the stream lines are computed by tracing their normal directions. (h)
shows the color maps of the computed thickness profile on the callosal surfaces.

Step 4. Multivariate morphometry feature computation. Our complete multivari-
ate morphometry feature consists of deformation tensors in log-Euclidean space
and callosal thickness. Given two triangles, [v1, v2, v3] and [w1, w2, w3], first, we
isometrically embed them onto the plane R2; the planar coordinates of the ver-
tices of vi, wj are denoted using the same symbols vi, wj . Then we explicitly
compute the Jacobian matrix J ,

J = [w3 − w1, w2 − w1][v3 − v1, v2 − v1]
−1.

The deformation tensor can be defined as S = (JTJ)
1
2 . Instead of analyzing

shape change based on the eigenvalues of the deformation tensor, a new family
of metrics, the “Log-Euclidean metrics” [17] is used in multivariate tensor-based
morphometry (mTBM). This conversion makes computations on tensors easier
to perform and statistical parameters can then be computed easily using the
standard formulae for Euclidean spaces.

To compute group differences with multivariate morphometry features, we
then apply Hotelling’s T 2 test on sets of multivariate morphometry values. Given
two groups of n × 1-dimensional vectors, Si, i = 1, 2, , p, Tj , j = 1, 2, , q, we use
the Mahalanobis distance M to measure the group mean difference,

M =
NSNT

NS +NT
(S̄ − T̄ )Σ−1(S̄ − T̄ )
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Fig. 1: Algorithm Pipeline illustrated by intermediate results.

where NS and NT are the number of subjects in the two groups, S̄ and T̄ are
the means of the two groups and Σ is the combined covariance matrix of the two
groups [18]. Since the statistic M is univariate, our analysis does not introduce
any bias because of the increase in the number of variables.

4 Experimental Results

Our data set consists of 14 CB, 10 LB and 20 SC adult subjects scanned on
a 3T MPRAGE Siemens Tim Trio MRI Scanner quality. Images were aligned
and scaled to the ICBM-53 brain template (International Consortium for Brain
Mapping) with the FLIRT software [19], using a 9-parameter linear transforma-
tions (3 translations, 3 rotations and 3 scales). Then we manually segmented the
CCs with Insight Toolkit’s SNAP program [20]. Tracings were performed in the
registered template space by a trained investigator (Y.K.) and the results were
checked by an experienced neuroscientist (F.L.). We consulted neuroanatomical
references of the corpus callosum to help guide the placement of the contours.
Fig. 2 shows some segmented results.

Then we apply Alg. 1 on the obtained binary images. Specifically, we gener-
ate tetrahedral meshes [10], compute conformal grids on their surface, register
surfaces with constrained harmonic map and segment them into superior and in-
ferior patches. We then estimate mTBM and the thickness (THK) at each vertex
between the two patches using the harmonic field. Similar to the practice in [18],
we also linearly covary the multivariate statistics at each pixel with subject age
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Fig. 2: Manually segmented callosal structure overlayed on an MRI image.

and gender information. The covaried statistics are used for a group difference
study. For the group difference test, we run a permutation test with 5000 ran-
dom assignments of subjects to groups to estimate the statistical significance
(p-maps) in surface morphometry [6].

Fig. 3 shows uncorrected p-maps for three group difference studies. To ex-
plore whether our multivariate statistics provide extra power when combining
thickness with mTBM, in each experiment, we also conducted three additional
statistical tests using the thickness and different tensor-based statistics derived
from the Jacobian matrix. The other statistics we studied are: (1) the thickness
(THK) itself; (2) the determinant of Jacobian matrix; and (3) the mTBM. For
statistics (1) and (2), we applied a Student’s t-test to compute the group mean
difference at each surface point. In case (3) and for our new combined measure,
we used Hotelling’s T 2 statistics to compute the group mean difference. In all sets
of results, we detected significant areas around splenium areas for the combined
measure. The CB also show significant changes in the body of the CC.

All group difference p-maps were corrected for multiple comparisons using
the false discovery rate method (FDR) [21]. The FDR method determines the
critical p-value, which is the highest threshold p-value that controls the FDR at
the given threshold, e.g. 5%. To rank which clinical measures were most strongly
associated with callosal morphology, we created cumulative distribution function
(CDF) plots of the resulting uncorrected p-values. The critical p-value, which is
the highest non-zero point at which the CDF plot intersects the y = 20x line,
represents the highest statistical threshold for which at most 5% false positive
are expected in the map. If there is no such intersection point (other than the
origin), there is no evidence to reject the null hypothesis. Also, steeper CDFs
show stronger effect sizes. FDR results are shown in Fig. 4. All measures are
significant for the CB vs. controls, while only our new combined measure falls
above the y = 20x line in the case of LB vs. controls.

Note that our results are consistent with previous work [7] and with the hy-
pothesis that splenium regions should be affected in all blind groups, but more
so in the CB. Our results are also consistent with another DTI tractography
study [22], which found fractional anisotropy was significantly reduced in the
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Fig. 3: Comparison of p-maps with four statistics on 3 different group difference studies.
Non-blue colors show vertices with statistical differences, at the 0.05 level, uncorrected.
The combined multivariate statistics outperformed all three individual statistics (the
critical p-values for these maps are shown in Fig. 4).

splenium of CB subjects. The splenium is primarily composed of fibers connect-
ing the visuo-spatial areas of the brain. The differences seen here may be due to
reduced myelination of these fibers in the absence of visual input.

In addition, with our novel multivariate statistics, we found changes in the
body of the CC in the LB group while no such difference was detected in [7].
In the late blind subjects, the process of myelination is relatively advanced, so
that the structure of the corpus callosum may not be that strongly influenced by
the loss of visual perception. Our new discovery, generally consistent with this
understanding, may provide additional insights to the myelination and cortical
plasticity process. More importantly, these results also suggest that the newly
proposed multivariate morphometry has more detection power in terms of ef-
fect size, likely because it captures callosal thickness and more directional and
rotational information when measuring geometric differences.

In future, we will combine and correlate our multivariate statistical frame-
work with other MRI imaging systems, such as cortical morphometry and diffu-
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Fig. 4: The cumulative distributions of the p-values for difference detected between
three diagnostic groups (CB, LB and SC) for all four statistics. The critical p-values
are the intersection points of the curves and the y = 20x line. The new multivariate
statistics achieved the highest critical p-values in all 3 comparisons.

sion tensor imaging (DTI) tractography, to advance our understanding of blind-
ness and improve the effectiveness of rehabilitation techniques and life quality
for blind individuals.
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