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Abstract. Alzheimer’s disease (AD) is a severe and growing public
health crisis. Efforts are underway to look for AD early detection in an
efficient manner. Among all the AD biomarkers, hippocampal atrophy
assessed on high-resolution T1-weighted MRI is the best established and
validated. Hippocampal morphometry is increasingly used in the AD re-
search, with modeling the hippocampus as a 3D parametric surface mesh.
However, a major question in the analysis is how to align corresponding
surface regions across subjects. Here we develop a system for detecting
AD symptoms on hippocampal surfaces with an automated surface fluid
registration method, which is based on conformal surface representation
and mutual information regularized image fluid registration. Since con-
formal mappings are diffeomorphic and the mutual information method
is able to drive a diffeomorphic flow that is adjusted to enforce appropri-
ate surface correspondences in the surface parameter domain, combining
conformal and fluid mappings will generate 3D shape correspondences
that are diffeomorphic. We also incorporate in the system a novel method
to compute curvatures using surface conformal parameterization. Exper-
imental results in three hippocampal datasets show that the new system
outperformed an early similar method and the popular SPHARM tool.

1 Introduction

Alzheimer’s disease (AD) doubles in frequency of onset every 5 years after age
60, afflicting 1% of those aged 60 to 64, and 30-40% of those over 85. Many MRI-
based measures of atrophy in several structural measures, including whole-brain,
hippocampus [14, 16, 19], and ventricular enlargement [19], etc., correlate closely
with changes in cognitive performance, supporting their validity as markers of
AD progression [8]. Among all the biomarkers, hippocampal atrophy assessed
on high-resolution T1-weighted MRI is the best established and validated. As
a result, detection of valid and efficient morphometry changes in hippocampus
and their correlation with other cognitive functions and biomarkers becomes a



key research topic for clinical diagnosis and monitoring of patients with sus-
pected Alzheimer’s disease. Although most hippocampus analysis used volume
as the atrophy measurement [10], recent researches [1, 16, 19, 26] demonstrated
that surface-based subcortical structure analysis may offer more advantages
because these methods studied patterns of hippocampal subfield atrophy and
produced detailed point-wise correlation between atrophy and cognitive func-
tions/biological markers [19].

Brain surface deformation studies typically require the computation of dense
correspondence vector fields that match one surface with another. Many brain
surface registration methods have been proposed [6, 20, 27].Often, higher order
correspondences must be enforced between specific anatomical points and curved
landmarks lying within the two surfaces. This can be achieved by first mapping
each of the 3D surfaces to canonical parameter spaces such as a sphere [7] or
a planar domain [21]. A flow, computed in the parameter space of the two sur-
faces [4], induces a correspondence field in 3D. Artificial neural networks can
rule out or favor certain types of feature matches [15]. Correspondences may be
determined by using a minimum description length (MDL) principle, based on
the compactness of the covariance of the resulting shape model [5]. A key direc-
tion in surface registration research has been the computation of a diffeomorphic
surface map that also matches automatically identified surface features.

Using holomorphic 1-forms, a global conformal parameterization can be de-
veloped to conformally map a surface with complex topology (e.g., a surface
with branching topology) to a set of rectangular domains in the Euclidean plane.
The resulting parameterization helps in discretizing partial differential equations
(PDEs) for smoothing, denoising, or matching signals defined on the surface. The
mutual information (MI) method has been widely used to drive a diffeomorphic
flow in image registration. By adjusting the mutual information method to en-
force appropriate surface correspondences in the parameter domain, any scalar-
valued signals defined on the surfaces can also be aligned using the same flow
field. Conformal maps and fluid registration techniques can be combined to avoid
having to define a large set of manually-defined landmarks to constrain brain
surface correspondences. Since they generate diffeomorphic mappings, confor-
mal and fluid mappings together could generate 3D shape correspondences that
are diffeomorphic (i.e., smooth one-to-one correspondences). In [21, 22], Wang
et al. proposed an automated surface fluid registration method based on confor-
mal mapping and mutual information regularized image fluid registration and
applied it to register human faces and hippocampus. Here we develop a system
based on this technique for studying hippocampus in AD and incorporate a novel
method to compute surface curvatures as proposed in [12]. Our major contribu-
tions can be summarized as: (1). Introduction of a new stable method to compute
surface curvatures. (2). An automated hippocampal surface registration system
validated in three AD datasets with better performance than a previous similar
method [23] and SPHARM [18]. (3). The system will be publicly available [24].
Last, although the current system finds applications in AD detection, it is a
general method which may be applied to many other applications.



2 Method

2.1 Surface Conformal Parameterization

Let S be a surface in R3 with an atlas {(Uα, zα)}, where (Uα, zα) is a coordinate
chart defined on S. The atlas thus is a set of consistent charts with smooth
transition functions between overlapping charts. Here zα : Uα → C maps an
open set Uα ⊂ S to a complex plane C. If on any chart (Uα, zα) in the atlas, the
Riemannian metric or the first fundamental form can be formulated as ds2 =
λ(zα)2dzαdz̄α, and the transition maps zβ ◦ z−1

α : zα(Uα
⋂
Uβ) → zβ(Uα

⋂
Uβ)

are holomorphic, the atlas could be called conformal. Given a conformal atlas, a
chart is compatible with the atlas if adding this chart still generates a conformal
atlas. A conformal structure is obtained by adding all possible compatible charts
to a conformal atlas. A Riemann surface is a surface with a conformal struc-
ture. One coordinate chart in the conformal structure introduces a conformal
parameterization between a surface patch and the image plane. The conformal
parameterization is angle-preserving and intrinsic to the surface geometry.

Let (xα, yα) be the local parameter on the chart (Uα, zα) on S, a differential
1-form in (xα, yα) can be defined as

ω = f(xα, yα)dxα + g(xα, yα)dyα (1)

where f, g are smooth functions. ω is a closed 1-form, if in each local parameter
(xα, yα), ∂f

∂yα
− ∂g

∂xα
= 0. If ω is the gradient of another function defined on S, it

can be called an exact 1-form. An exact 1-form is also a closed 1-form. If a closed
1-form ω satisfies ∂f

∂xα
+ ∂g

∂yα
= 0, then it is a harmonic 1-form. The gradient of

a harmonic 1-form is an exact harmonic 1-form. The Hodge star operator acting
on a differential 1-form gives the conjugate differential 1-form

∗ω = −g(xα, yα)dxα + f(xα, yα)dyα (2)

Intuitively, the conjugate 1-form ∗ω is obtained by rotating ω by a right angle
everywhere. If ω is harmonic, so is its conjugate ∗ω. The holomorphic 1-form
consists of a pair of conjugate harmonic 1-forms:

τ = ω +
√
−1∗ω (3)

For a Riemann surface S with genus g > 0, its conformal structure can always
be represented in terms of a holomorphic 1-form basis, which is a set of 2g
functions τi : Ki → R2, i = 1, 2 · · · , 2g [22]. Any holomorphic 1-form τ is a linear
combination of these functions. This finite-dimensional linear space generates all
possible conformal parameterizations of surface S and the quality of a global
conformal parameterization is fundamentally determined by the choice of the
holomorphic 1-form [22]. Then the conformal parameterization φ at point p can
be computed by integrating the holomorphic 1-form: φ(p) =

∫
γ
τ , where γ is any

path joining p to a fixed point c on the surface. Figure 1 (a) illustrates a brain
cortical surface and its conformal parameterization to a square.



2.2 Surface Conformal Representation

It has been known that surface registration requires defining a lot of landmarks
in order to align corresponding functional regions. Labeling features could be
accurate but time-consuming. Here we show that surface conformal parame-
terization could represent surface geometric features, thus avoiding the manual
definition of landmarks.

For a general surface and its conformal parameterization φ : S → R2, the
conformal factor at a point p can be determined by the formulation:

λ(p) =
Area(Bε(p))

Area(φ(Bε(p)))
(4)

where Bε(p) is an open ball around p with a radius ε. The conformal factor
λ encodes a lot of geometric information about the surface and can be used
to compute curvatures and geodesic. In our system, we compute the surface
mean curvatures only from the derivatives of the conformal parameterization
as proposed in [12], instead of the three coordinate functions and the normal,
which are generally more sensitive to digitization errors. Mathematically, the
mean curvature is defined as:

H =
1

2λ
sign(φ)|∆φ|, where sign(φ) =

< ∆φ,
−→
N >

|∆φ|
. (5)

Using this formulation of H, we need to use the surface normal
−→
N only when

computing sign(φ), which takes the value 1 or -1. Thus, the surface normal
does not need to be accurately estimated and still we can get more accurate
mean curvatures. Using the Gauss and Codazzi equations, one can prove that
the conformal factor and mean curvature uniquely determine a closed surface
in R3, up to a rigid motion. We call them the conformal representation of
the surface. Figure 1 (b) shows the computed conformal factor (left) and mean
curvature (right) on a hippocampal surface with color indices according to the
values. Since conformal factor and mean curvature could represent important
surface features and they are intrinsic to the surface, they may be used for
surface registration.

2.3 Surface Fluid Registration Regularized by Mutual Information

After computing intrinsic geometric features, we align surfaces in the parameter
domain with a fluid registration technique.Using conformal mapping, we essen-
tially convert the surface registration problem to an image registration problem.
The mutual information (MI) method has been successfully used to drive a dif-
feomorphic flow in rigid [25] and non-rigid [13, 17] image registration. Image
registration will be optimized when MI between two images is maximized. For
MI to work, a monotonic mapping in grayscales between images is not required,
so images from different modalities can be registered [11]. Hermosillo et al. [9]
adopted linear elasticity theory to regularize the variational maximization of MI.



Fig. 1. Illustration of conformal parameterization (a) and geometric features (b). (c)
shows the matching of geometric features in the 2D parameter domains using fluid
registration with synthetic surfaces. Geometric features on 3D surfaces were computed
and mapped to 2D conformal parameter domains.

D’Agostino et al. [3] extended this approach to a viscous fluid scheme allowing
large local deformations, while maintaining smooth, one-to-one topology [2]. We
call this approach MI regularized fluid registration.

In [21, 22], Wang et al. proposed an automated surface fluid registration
method combining conformal mapping and image fluid registration [3]. Let I1, I2
be the conformal representations of the target and the deforming template sur-
faces, respectively, the MI between two surfaces was defined as [21, 22]

I(u) =

∫
R2

pu(i1, i2)log
pu(i1, i2)

p(i1)pu(i2)
di1di2 (6)

where p(i1) = P (I1(x) = i1), pu(i2) = P (I2(x − u) = i2), and pu(i1, i2) =
P (I1(x) = i1 & I2(x − u) = i2). Since conformal mapping and MI regularized
fluid registration generate diffeomorphic mappings, a diffeomorphic surface-to-
surface mapping is then recovered that matches surfaces in 3D. In our system, we
adopt their methods of conformal mapping and fluid registration. However, our
system differs from theirs in the computation of surface features as introduced
in Sec. 2.2. The new way to compute mean curvature is more stable and less
sensitive to normal computation, thus gives better representation of the surface
features for registration.



3 Results

3.1 Synthetic Surface Registration Result

First, we illustrate the algorithm on synthetic surfaces. Figure 1 (c) illustrates
a synthetic surface example. A pair of simple S-shape surfaces were generated.
Corresponding 2D images were generated based on the sum of the local confor-
mal factor and the mean curvature, expressed in the conformal parameterization
domain. Some black horizontal lines were drawn on the surfaces to show equal
distances on the surfaces and represent the differences in their shapes.The loca-
tions of the highest and lowest intensities are different (as shown by the positions
of the horizontal stripes in the 2D images below). Using surface-based fluid reg-
istration, in the last image, the obtained horizontal line positions demonstrated
an improved matching between features lying in the two surfaces.

In this experiment, we aim to visually explain the work flow of the algorithm.
First, we conformally mapped each surface onto a planar domain and computed
their conformal representation by combining conformal factor and mean cur-
vature. Second, we scaled the conformal representation to form the 2D feature
images as shown by the first two 2D images in Fig. 1 (c). As we pointed out
in Sec. 2.2, the 2D images, i.e. the conformal representations of the surfaces
clearly show the characteristics of the surfaces. Third, by registering the two
feature images using fluid registration method, we induced a change in both the
template feature image and the template surface. The last image in Fig. 1 (c)
demonstrates that without changing the shape of the surface, the features on
the template surface are well aligned with the target surface.

3.2 Hippocampal Surface Morphometry in Alzheimer’s Disease

In this experiment, we test the robustness of our system by applying it to two
clinical studies of hippocampal changes in Alzheimer’s disease (AD). In our
system, we leave two holes at the front and back of the hippocampal surface,
representing its anterior junction with the amygdala, and its posterior limit as
it turns into the white matter of the fornix. The resulting structure can then be
logically represented as an open boundary genus-one surface, i.e., a cylinder. To
better visualize the matching of surface features, we chose to encode surface fea-
tures using a compound scalar function based on the local conformal factor and
the mean curvature. A similar technique for AD study in hippocampus was pro-
posed in [23], but with surface registration using constrained harmonic map. We
take their method as a comparison. After the cross-subject registration is com-
puted with one target surface selected, we examine shape differences using the
multivariate tensor-based morphometry (MTBM) [23]. MTBM computes statis-
tics from the Riemannian metric tensors that retain the full information in the
deformation tensor fields, thus is more powerful in detecting surface differences
than many other statistics [23].

Figure 2 illustrates the experimental results on a group of hippocampal sur-
face models extracted from 3D brain MRI scans of 12 individuals with AD and



Fig. 2. The comparison of our method and a previous similar method on map of local
shape differences (p-values), based on the multivariate TBM method with hippocampal
surfaces in 12 AD versus 14 control subjects [19].

14 matched healthy control subjects, the same dataset as in [19], where the data
was manually traced by experienced neurologists. With MTBM, we can see that
the significant areas detected with two methods are consistent.But with surface
fluid registration, we detected larger areas with more significant group differences
in the surface parameterization tensor, which is related to the relative area of
regions in disease versus normality.The overall statistical significance of these
group difference maps, based on permutation testing of the suprathreshold area
of statistics (and therefore corrected for multiple comparisons) were p=0.0063
for the left hippocampal surface and 0.0298 for the right. This outperformed
the previous method [23] (0.0205 for the left hippocampal surface and 0.1026
for the right). The cumulative distribution function (CDF) plot shows the com-
parison of resulting p-values for each method. While the line y = x represents
null hypothesis, which is according to no difference, steeper curve shows more
differences detected.

Figure 3 illustrates the experimental results on another hippocampal dataset
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (http://
www.loni.ucla.edu/ADNI). Mild cognitive impairment (MCI) is an intermediate
stage between the expected cognitive decline of normal aging and the more
pronounced decline of dementia. If MCI could be found and treated, the risk
of AD will be significantly reduced. However, at MCI stage, changes in brain
surface are not significant thus impose more difficulty on the detection. Here we
randomly chose 40 AD, 40 MCI, and 40 control subjects to test the effectiveness
of our system. The hippocampus data was automatically segmented by a prior
work [14]. With MTBM, we can see that, in the three experiments, our system



demonstrated better results than the previous method. Particularly, our system
gave better MCI detection results when comparing with both AD and control
subjects. In the experiment, all group difference p-maps were corrected using
false discovery rate (FDR). The FDR method decides whether a threshold can
be assigned to the statistical map that keeps the expected FDR below 5% (i.e.,
no more than 5% of the voxels are false positive findings). The CDF plots show
the uncorrected p-values (as in a conventional FDR analysis). The x value at
which the CDF plot intersects the y = 20x line represents the FDR corrected
p-value or q-value. It is the highest statistical threshold that can be applied
to the data, for which at most 5% false positives are expected in the map. In
general, a larger q-value indicates a more significant difference in the sense that
there is a broader range of statistic threshold that can be used to limit the rate
of false positives to at most 5%. The use of the y = 20x line is related to the
fact that significance is declared when the volume of suprathreshold statistics is
more than 20 times that expected under the null hypothesis. Table 1 gives the
FDR corrected p-values comparison.

3.3 Comparison with SPHARM

In this study, we tested our system on the whole ADNI baseline dataset (http://
www.loni.ucla.edu/ADNI). The dataset consists of 233 healthy controls, 410 sub-
jects with MCI, and 200 patients with AD. We excluded 1 subject from the
control group and 2 subjects from the MCI group due to name duplication.
For subjects with duplicated names, we retained the one which is the repeated
scan. The hippocampal surfaces were automatically segmented using FIRST
(http://www.fmrib.ox.ac.uk/fsl/first/index.html). FIRST is an integrated sur-
face analysis tool developed as part of the FSL library, which is written mainly
by members of the Analysis Group, FMRIB, Oxford, UK. We compared our
system’s results with the popular SPHARM tool [18] in surface registration on
the same dataset. We adopted the suggested parameters for hippocampus in the
manual of SPHARM [18]. In this experiment, 1 subject from each group (AD,
MCI, control) failed the FIRST segmentation step probably due to the original
images’ resolution or contrast. After FIRST segmentation, we extracted the left
and right hippocampi and saved each of them into a binary image. We fed the
binary images as the input of both systems. As a result, 231 control, 199 AD, and
407 MCI subjects were successfully registered by our system, which shows the
robustness of the system compared with SPHARM, in which 5 control, 17 AD,
14 MCI subjects failed either due to segmentation failure or parameterization
failure. Fig. 4 shows the experimental results. From the p-map and the CDF
plots, we can see that, with MTBM, our system outperformed the SPHARM

Our Method Prior Method [23]

AD-CTL 0.0476 0.0467

MCI-AD 0.0217 0.0199

MCI-CTL 0.0221 0.0185
Table 1. FDR corrected p-values on hippocampal surfaces



in all three group difference studies. Table 2 gives the FDR corrected p-values
comparison. Considering fairness, we also made comparisons by excluding those
subjects that failed in SPHARM from our system in the statistical study. Table
3 gives the FDR corrected p-values comparison with the failed subjects excluded,
i.e., 226 control, 182 AD, and 393 MCI subjects were studied in this experiment.
From the table, we can see that our system still outperformed SPHARM on this
dataset. Furthermore, because AD and MCI failed more than control subjects,
the AD-MCI group has been more affected as expected.

4 Conclusion and Future Work

We develop an automated surface fluid registration system for hippocampal sur-
face registration. Experiments on different types of AD hippocampal datasets all
demonstrate our system’s stronger statistical power. Ongoing work is to apply
this system to automatically map lateral ventricle enlargements in Alzheimer’s
disease and those at risk.
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Fig. 3. Comparison of surface fluid registration and the previous method on map of
local shape differences (p-values), based on the mutivariate TBM method with hip-
pocampal surfaces in 40 AD, 40 MCI, and 40 control subjects which were automati-
cally segmented [14]. (a), (c), (e) are our results on group difference between AD and
control, MCI and AD, MCI and control, respectively. Similarly, (b), (d), (f) are results
of a prior work [23] on AD and control, MCI and AD, MCI and control, respectively.
The p-map color scale is the same as Figure 2.



Fig. 4. Comparison of surface fluid registration and SPHARM on map of local shape
differences (p-values), based on the mutivariate TBM method with hippocampal sur-
faces from ADNI baseline data, which were automatically segmented by FIRST. (a),
(c), (e) are our results on group difference between AD and control, MCI and AD, MCI
and control, respectively, in 231 control, 199 AD, and 407 MCI subjects. Similarly, (b),
(d), (f) are results of SPHARM on AD and control, MCI and AD, MCI and control,
respectively, in 226 control, 182 AD, and 393 MCI subjects. The p-map color scale is
the same as Figure 2.


