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Abstract. Cortical thickness estimation in magnetic resonance imag-
ing (MRI) is an important technique for research on brain development
and neurodegenerative diseases. This paper presents a heat kernel based
cortical thickness estimation algorithm, which is driven by the graph
spectrum and the heat kernel theory, to capture the grey matter ge-
ometry information in the in vivo brain MR images. First, we use the
harmonic energy function to establish the tetrahedral mesh matching
with the MR images and generate the Laplace-Beltrami operator matrix
which includes the inherent geometric characteristics of the tetrahedral
mesh. Second, the isothermal surfaces are computed by the finite element
method with the volumetric Laplace-Beltrami operator and the direction
of the steamline is obtained by tracing the maximum heat transfer prob-
ability based on the heat kernel diffusion. Thereby we can calculate the
cerebral cortex thickness information between the point on the outer sur-
face and the corresponding point on the inner surface. The method relies
on intrinsic brain geometry structure and the computation is robust and
accurate. To validate our algorithm, we apply it to study the thickness
differences associated with Alzheimer’s disease (AD) and mild cognitive
impairment (MCI) on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset. Our preliminary experimental results in 151 subjects
(51 AD, 45 MCI, 55 controls) show that the new algorithm successfully
detects statistically significant difference among patients of AD, MCI and
healthy control subjects. The results also indicate that the new method
may have better performance than the Freesurfer software.
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Discovery Rate

1 Introduction

Alzheimer’s disease (AD) is a common central nervous system degenerative dis-
ease. Its symptoms on clinical anatomy are the partly atrophy in the cerebral
cortex of the patients. If we can accurately estimate the cortical thickness and
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identify out reliable different regions between patient and control groups, it may
help the early detection of the disease, evaluate disease burden, progression and
response to interventions. However, despite evidence that medial temporal atro-
phy is associated with AD progression, the MRI imaging measurement of medial
temporal atrophy is still not sufficiently accurate on its own to serve as an ab-
solute diagnostic criterion for the clinical diagnosis of AD at the mild cognitive
impairment (MCI) stage.

According to the geometric properties of the measurement tools, the thickness
estimation methods can be broadly divided into two categories: based on either
surface or voxel characteristics (as reviewed in [1]). The measurement methods
based on the surface features are aimed to establish triangular mesh models in
accordance with the topological properties of the inner and outer surface, and
then use the deformable evolution model to couple the two opposing surfaces.
The thickness is defined as the value of the level set propagation distance between
the two surfaces. This measurement accuracy can reach the sub-pixel level but
requires constantly correcting the weights of various evolutionary parameters to
ensure the mesh regularity. Sometimes the model can not work in the high fold-
ing regions such as the sulci. Various approaches were proposed to address this
problem and increase the thickness estimation accuracy in the high curvature
areas. For example, Mak-Fan et al. modeled the sulci regional by adding the
cortex thickness constraints [2]. Fischl and Dale proposed to model the middle
part of the sulci by imposing the self-intersection constraints [3]. Although better
measurement results are achieved, the computation cost is high [4]. The voxel-
based method is the measurement on a three-dimension cubic voxel grid. There
is no correction of the mesh topology regularity, so the calculation is simple [5,
6]. However, due to the restrictions of the grid resolution, the measurement ac-
curacy is low and sensitive to noise [7]. The voxel-based measurement acquires
the cortex thickness information by solving partial differential equations in the
potential field, for example, Jones et al. [8] first used the Laplace equation to
characterize the layered structure of the volume between the inner and outer
surfaces and obtained the stream line. This method is known as the Lagrangian
method. Hyde et al. [9] proposed the Euler method by solving the one-order
linear partial differential equations for thickness calculation which can improve
the computation efficiency. The main disadvantage of the voxel-based estima-
tion method is the computational inaccuracy on the discrete grid. The limited
grid resolution affects the accuracy of the thickness measurement. Some prior
work, e.g.[10], used the boundary topology to initialize a sub-voxel resolution
surface and correct the direction of the stream line. This method can increase
the measurement accuracy.

From the above discussion, in order to improve the computational efficiency
and the degree of automation, one may expect the choice of voxel-based measure-
ment algorithm is more feasible. However, we should overcome the defect of the
limited grid resolution which can not precisely characterize the curved cortical
surfaces from MR images. The 3D model we need should achieve a good fitting
for the cerebral cortex morphology and facilitate an effective computation on
the sub-voxel resolution. The preferred model to satisfy the above requirements
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is a tetrahedral mesh [11], as a cubic voxel can be divided into n tetrahedra
according to the resolution requirement.

It is also worth noticing that the tetrahedral mesh quality will affect the
accuracy of solving the partial differential equations. For example, too small
dihedral angles will lead to stiffness matrix ill-posed problem in the finite ele-
ment method and too large dihedral angles will lead to the interpolation and
discretization errors. The common tetrahedra generation method is to revise the
tetrahedra through the iterative processing. One class of methods are to divide
the voxels of the MRI to tetrahedra according to the generation quality [12].
But it usually results in the loss of the original image information because of the
lack of the boundary restriction conditions. Another class of methods intends to
comply with the precise topology structure of the original image by adaptively
adjusting the size of the tetrahedra [13], which constantly use the external force
to pull the tetrahedral vertices to the boundary of the MRI. However, it neglects
the quality of each tetrahedron.

There are two main contributions in our paper. First, this paper intends
to generate the high-quality tetrahedral mesh suitable for the areas of the cor-
tex with rich details on the basis of the results of the previous studies. And the
tetrahedral mesh can be facilitated to analyze the potential field, which has been
elaborated in many literatures, e.g. [14]. Compared with prior work [8], our PDE
solving computation can achieve sub-voxel accuracy. Second, we propose a heat
kernel based method to accurately estimate the streamline with the intrinsic and
global cortical geometry information. In a prior work [8], the computations of the
streamline by solving the partial differential equations are rooted in computa-
tional geometry to determine the streamline directions. It neglects the inherent
geometric characteristics between the points in the mesh. Geometrically speak-
ing, heat kernel determines the intrinsic Riemannian metric [15] and it can be
reliably computed through the Laplace-Beltrami matrix. Recently, the surface
based heat kernel methods were widely used in image shape analysis [16], classi-
fication [17], and registration [18]. However, 3D heat kernel methods are still rare
in medical image analysis field. Here we propose a novel 3D heat kernel method
and apply it to refine streamline computation and improve the accuracy of the
cortical thickness estimation. Besides the computational efficacy and efficiency,
our method also takes numerous other advantages of the spectral analysis such
as the measurement invariance of inelastic deformation and the robustness of
the topological noise.

2 Tetrahedral mesh generation algorithm

The pipeline of our tetrahedral mesh generation algorithm for the MR images is
shown in Fig. 1. First we fill the MRI space with the cubic background voxels
and the space attribute of each vertex is determined by the point-to-boundary
distance function ϕ(x) . ϕ(x) is calculated using the fast marching method based
on the vertex connection relationship. The sign of the ϕ(x) indicates the region
where the vertex is located, and mark the square surface as the boundary where
the ϕ(x) of vertices is equal to zero. Here we can adaptively adjust the filled cubic
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Fig. 1: Tetrahedral mesh generation work flow.

(a) cubic side length as 0.23mm (b) cubic side length as 0.04mm

Fig. 2: Generated tetrahedral meshes with different cubic side lengths.

lengths by calculating the vertex coordinates(x or y) difference of the adjacent
boundary surface with the same z coordinate.

The results of different cubic length are shown in Fig. 2. We adaptively adjust
the cubic side lengths to fill the MRI according to the vertices fluctuation of the
cubes. On the other hand, the degree of the approximation and smoothness of
the mesh can be adaptively adjusted. Secondly, the cubic voxel containing the
boundary surface and the internal voxel are split into the tetrahedra according
to the pyramid and the body-centered lattice forms. The details of the splitting
algorithm are shown in Fig. 3. Here, the left voxel contains the boundary surface
(ABCD), O and O′ are the central points of the left and right cubic voxels, the
tetrahedra (ABDO and BDCO) are the split results by the pyramid form. And
the right voxel is the internal one, the tetrahedra (OO’EF and OO’GH) are the
split results by the body-centered lattice form. So the cubic voxels are composed
of excellent quality tetrahedra, which have dihedral angles as 60◦ and 90◦ .

On this basis, the tetrahedra near the boundary are to be cut by the iso-
surface (ϕ(x) = 0) based on the vertex space attribute and linear proportional
function. Finishing the cutting, we should consider the reconstruction of the new
tetrahedra under the condition of the original tetrahedral collapse. In addition,
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Fig. 3: Two kinds of forms for splitting the cubic voxels into tetrahedra.

if we find the cutting point of the edge is close to the holding internal vertex,
the implementation of adsorption operation is required, i.e. the internal vertex
will be pulled onto the isosurface. After the above operations, the original back-
ground grid is organized into the tetrahedral mesh which substantially fits the
cerebral cortex geometry structure.

The obtained tetrahedral mesh needs to be corrected to improve the quality
and the smoothness owing to the cutting and organization operations. We achieve
it with the regularization algorithm for the boundary smoothness and tetrahedral
quality improvement based on the harmonic function minimization [19]. The
initial tetrahedra conforming state is given by X , while the deformed state is
denoted by x , and the displacement vector field v is given by v = x−X . Then
the regularized tetrahedral mesh is obtained by finding a v that minimizes an
energy G(v) . G(v) is composed of three additive terms, an elastic term E(v), a
smoothness term S(v) and a fidelity term B(v) . The details of this algorithm
can be referred to [19].

3 Thickness measurement algorithm based on the heat
kernel diffusion

3.1 Heat Kernel

Let f be a real-valued function, with f ∈ C2, defined on a tetrahedral mesh K.
We use the volumetric Laplace-Beltrami operator proposed in a prior work [20].
We define the piecewise Laplace-Beltrami operator as the linear operator ∆K :
CPL → CPL on the space of piecewise linear function f , on K, which is defined
as

∆K(f) = Σ{u,v}∈Kk(u, v)(f(u)− f(v)) (1)

where k(u, v) = 1
12Σ

n
i=1li cot(θi), θi is the associated dihedral angle and li is

the length of an edge to which edge {u, v} is against in a tetrahedron model.
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Fig. 4: The heat transition paths and the values of the from the specific point on the
outer isothermal surface (0.95◦) to the different points on the inner isothermal surface
(0.90◦).

Compared with other rasterization-based Laplace-Beltrami operator computa-
tion methods, because of the multi-resolution nature of the tetrahedral mesh,
our method may capture and quantify local volumetric geometric structure more
accurately.

The heat kernel diffusion on differentiable manifold with Riemannian metric
is governed by the heat equation:

∆Kf(x, t) =
∂f(x, t)

∂t
(2)

where f(x, t) is the heat distribution of the volume at the given time t. We know
that the heat diffusion process can be represented by its time dependent and its
spatially dependent parts.

f(x, t) = F (x)T (t) (3)

When Eq. 3 is substituted to Eq. 2, we can get the Helmholtz equation to
describe the heat vibration modes in the spatial domain.

∆F (x) = −λF (x) (4)

Eq. 4 can be treated as the Laplacian eigenvalue problem with infinite number of
eigenvalue λi and eigenfunction Fi pairs. The solution of equation above can be
interpreted to the superposition of the harmonic functions in the given spatial
position and time. Given an initial heat distribution F : K → R, let Ht(F )
denote the heat distribution at time t, and limt→0 Ht(F ) = F . Ht is called the
heat operator. Both ∆K and Ht share the same eigenfunctions, and if λi is an
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(a) (b)

Fig. 5: The thickness measurement result from Fig. 4. (a) shows that the half outer
surface which is far from the inner hole and (b) shows the half outer surface which is
close to the inner hole. The colormap information represents the size of the thickness.

eigenvalue of ∆K , then e−λit is an eigenvalue of Ht corresponding to the same
eigenfunction.

For any compact Riemannian manifold, there exists a function kt(x, y) :
R+ ×M ×M → R, satisfy the formula

HtF (x) =

∫
K

kt(x, y)F (y)dy (5)

where dy is the volume form at y ∈ K. The minimum function kt(x, y) that
satisfies Eq. 5 is called the heat kernel, and can be considered as the amount
of heat that is transferred from x to y in time t given a unit heat source at x.
According to the theory of the spectral analysis, the heat kernel has the following
eigen-decomposition heat diffusion distance:

kt(x, y) = Σ∞
i=0e

−λitϕi(x)ϕi(y) (6)

where λi and ϕi are ith the eigenvalue and eigenfunction of the Laplace-Beltrami
operator, respectively. So we can see that the heat kernel can be completely rep-
resented by the eigenvalues and eigenfunctions of the Laplace-Beltrami operator.
At the same time, the heat kernel kt(x, y) can be interpreted as the transition
probability of the Brownian motion on the manifold and has significant applica-
tions in computer vision and machine learning fields. The kt(x, y) of the specific
point x on an isothermal surfacem to the different point y on the next isothermal
surface m′ at the same time interval can represent the different heat transition
probability. The connection direction of the x and y according to the maximum
transition probability is the direction of the temperature gradient. And then
y as a starting point, we will continue to search the next point y′ in the next
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isothermal surface n whose kt(x, y) is the maximum among the all kt(y,R) . So a
streamline of the cortex will be obtained by finding out the maximum heat tran-
sition probability between the isothermal surfaces in the order from the specific
point on the highest isothermal surface.

3.2 Heat Transition Path

In this paper, we use the Laplace equation in the cortex region to obtain the
temperature distribution by the finite element method. The kt(x, y) of the spe-
cific point x on an isothermal surface m to the different point y on the next
isothermal surface m′ at the same time interval is computed. In the following,
we make a simulation experiment to measure the thickness. A hollow shell is gen-
erated by our tetrahedron mesh generation algorithm. The outer surface center
is located in (−0, 0, 0) and the inner surface center is (−0.5, 0, 0), the outer sur-
face and the hole surface are the irregular spherical surfaces. First we set the
temperature value of the outer surface as 1◦ and inner surface as 0◦. Through
the finite element method, the temperature distribution and the isothermal sur-
face in the mesh can be acquired. Fig. 4(a) shows that the coordinates of x are
(−3.9669, 0.49833, 0.12544) on the outer isothermal surface m whose tempera-
ture is 0.95◦, and the inner isothermal surface m′ is the surface of temperature of
0.90◦. The part of heat transition paths from x to the isothermal surface m′ are
represented by the blue lines. Where the red line represents the path from x to
y whose coordinates are (−1.9645, 0.26586, 1.0978) and the maximum kt(x, y) is
13.081 as the time interval is 0.02. And the important point is that the red line is
perpendicular to the two isothermal surfaces approximately. In order to clearly
show the heat transition paths, the interval distance between the two isothermal
surfaces is enlarged to display. Fig. 4 (b) shows the values of the kt(x, y) on the
inner isothermal surface from x to the different y. As shown in Fig. 4 (a) and
(b), we can see that the values of kt(x,R) increase as the colors go from blue to
yellow and to red. This means the geometry and topology relationships from x
to the different points on the next isothermal surface. With this simple example,
we visualize the fact that eigenvalues and eigenfunctions of the Laplace-Beltrami
Operator can represent the intrinsic volume geometry characteristics.

Some thickness measurement results from Fig. 4 are shown in Fig. 5. Here
the step size is chosen as 0.2 which means that the isothermal interval is 0.2◦.
We add the length of all the segment lines between the isothermal surfaces which
represent the maximum heat transition and obtain the thicknesses of the vertices
on the outer surface. Fig. 5 (a) shows that the half outer surface which is far
from the hole and (b) shows the half outer surface which is close to the hole.
The colormap information represents the size of the thickness.

4 Statistical Maps and Multiple Comparison

The experiments in this work were performed on T1 image data (AD=51, MCI=45,
control=55) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [21].
As a proof-of-principle work, our analysis was focused on the medial temporal
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Statistical p-map results of Heat Diffusion and Freesurfer show group differences
among three different groups, (a), (c), (e) are the results of our method, (b), (d), (f)
are results of Freesurfer software on group difference between AD and control, control
and MCI, AD and MCI, respectively.
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Fig. 7: The cumulative distributions of p-values comparison for difference detected be-
tween three groups (AD, MCI, CTL). In the CDF, the q-values are the intersection
point of the curve and the y = 20x line. In a total of 3 comparisons, the heat diffusion
method achieved the highest q-values.

lobe of the left brain hemisphere. The grey matter segmentation, surface recon-
struction, surface correspondence, region of interest (ROI) extraction on white
matter and pial surfaces were computed by Freesurfer software [22].

With the segmented brain images, the acquired data was interpolated to form
cubic voxels with an edge length of 0.2mm. The minimum dihedral angle of the
generated tetrahedron mesh is 12 degree and maximum dihedral angle is 130
degree. The maximum edge ratio is set as 5.0. Then the thickness measurement
based on heat kernel is applied on the extracted ROI. We applied the Student’s
t test on sets of thickness values measured on corresponding surface points to
study the statistical group difference. Given each matching surface point, we
measure the difference between the mean thickness of three different groups
(AD vs. control, MCI vs. control and AD vs. MCI) by

t =
Ū − V̄√

2
nSUV

(7)

where Ū and V̄ are the thickness means of the two groups and SUV is the grand
standard deviation. The denominator of t is the standard error of the difference
between two means. For multiple comparison, we ran a permutation test with
15, 000 random assignments of subjects to groups to estimate the statistical sig-
nificance of the thickness with group differences. The covariate was permuted
15, 000 times. The probability was later color coded on each surface template
point as the statistical p-map of group difference. Fig. 6 shows the p-maps of
group difference detected between AD and control, AD and MCI, control and
MCI groups, respectively, and the significant level at each surface template point
as 0.05. Fig. 6 (a), (c) and (e) are the statistical p-map results with Heat Dif-
fusion; (b), (d) and (f) are those with Freesurfer. All group difference p-maps
were corrected for multiple comparisons using the widely-used false discovery
rate method (FDR) [23]. The FDR method decides whether a threshold can be
assigned to the statistical map that keeps the expected false discovery rate below
5% (i.e., no more than 5% of the voxels are false positive findings). In Fig. 6, the
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Heat kernel diffusion Freesurfer

AD-CTL 0.0492 0.0459

AD-MCI 0.0347 0.0201

CTL-MCI 0.0425 0.0348

Table 1: The FDR corrected p-value (q-value) comparison.

non-blue color areas denote the statistically significant difference areas between
two groups. Fig. 7 (a)-(c) are the cumulative distribution function (CDF) plots
showing the uncorrected p-values (as in a conventional FDR analysis). The x
value at which the CDF plot intersects the y = 20x line represents the FDR-
corrected p-value or q-value. It is the highest statistical threshold that can be
applied to the data, for which at most 5% false positives are expected in the
map. In general, a larger q-value indicates a more significant difference in the
sense that there is a broader range of statistic threshold that can be used to limit
the rate of false positives to at most 5% [24]. The use of the y = 20x line is re-
lated to the fact that significance is declared when the volume of suprathreshold
statistics is more than 20 times that expected under the null hypothesis.

With the proposed univariate statistics, we studied differences between three
diagnostic groups: AD, MCI and controls. As expected, we found relatively
strong thickness differences between AD and control groups (q-value: 0.0492 with
heat diffusion method and 0.0459 with Freesurfer software) and strong thickness
differences between MCI and control groups (q-value: 0.0425 with heat diffu-
sion method and 0.0348 with Freesurfer software), the details are in Fig. 6 and
Fig. 7. We compared the statistical power (determined by FDR corrected overall
significant values) with the two thickness methods, our method demonstrated
the strongest or comparable statistical power for the three group comparisons
(detailed in Table 1). Although more validation is certainly necessary, the cur-
rent results suggest that the heat diffusion measure may offer greater statistical
power than the Freesurfer software.

5 Conclusion

In this paper, we present a heat kernel based thickness estimation algorithm
which can improve the computational efficiency and accuracy for in vivo MR
image cortical thickness estimation. Through establishing the tetrahedral mesh
matching with the MRI by the harmonic energy function, we can reduce the
limited grid resolution effects. At the same time, we introduce the heat kernel to
the streamline analysis to determine the heat transfer gradient direction. With
the proposed univariate statistics, we studied differences between three diagnos-
tic groups: AD, MCI and controls. We compare our method with the Freesurfer
software, the results show that the heat diffusion method achieved greater sta-
tistical power than the Freesurfer software in a total of three comparisons. In the
future, we plan to depict the geometrical characteristics of the local and global
cortical regions by using the heat kernel diffusion and apply them in our ongoing
preclinical AD research.



12 G.Wang et al.

6 Acknowledgments

This work was supported by the National Natural Science Foundation of China
(No. 11074105), , the Science and Technology Development Program of Shan-
dong Province (No. 2011YD01078), the Natural Science Foundation of Shandong
Province (No. ZR2012FL21). the School-Enterprise Fund of Ludong University
(No. 2010HX007).

References

1. Clarkson, M.J., Cardoso, M.J., Ridgway, G.R., Modat, M., Leung, K.K., Rohrer,
J.D., Fox, N.C., Ourselin, S.: A comparison of voxel and surface based cortical
thickness estimation methods. Neuroimage 57(3) (Aug 2011) 856–865

2. Mak-Fan, K.M., Taylor, M.J., Roberts, W., Lerch, J.P.: Measures of cortical grey
matter structure and development in children with autism spectrum disorder. J
Autism Dev Disord 42(3) (Mar 2012) 419–427

3. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex
from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97(20) (Sep 2000)
11050–11055

4. Dahnke, R., Yotter, R.A., Gaser, C.: Cortical thickness and central surface esti-
mation. Neuroimage 65 (Jan 2013) 336–348

5. Cardoso, M.J., Clarkson, M.J., Ridgway, G.R., Modat, M., Fox, N.C., Ourselin,
S.: LoAd: a locally adaptive cortical segmentation algorithm. Neuroimage 56(3)
(Jun 2011) 1386–1397

6. Scott, M.L., Bromiley, P.A., Thacker, N.A., Hutchinson, C.E., Jackson, A.: A fast,
model-independent method for cerebral cortical thickness estimation using MRI.
Med Image Anal 13(2) (Apr 2009) 269–285

7. Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical
thickness measurement. Neuroimage 45(3) (Apr 2009) 867–879

8. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical
thickness using Laplace’s equation. Hum Brain Mapp 11(1) (Sep 2000) 12–32

9. Hyde, D.E., Duffy, F.H., Warfield, S.K.: Anisotropic partial volume CSF modeling
for EEG source localization. Neuroimage 62(3) (Sep 2012) 2161–2170

10. Jones, G., Chapman, S.: Modeling growth in biological materials. SIAM Review
54(1) (2012) 52–118

11. Cassidy, J., Lilge, L., Betz, V.: Fullmonte: a framework for high-performance monte
carlo simulation of light through turbid media with complex geometry. (2013)
85920H–85920H–14

12. Liu, Y., Xing, H.: A boundary focused quadrilateral mesh generation algorithm
for multi-material structures. Journal of Computational Physics 232(1) (2013)
516–528

13. Lederman, C., Joshi, A., Dinov, I.: Tetrahedral mesh generation for medical images
with multiple regions using active surfaces. In: Proc IEEE Int Symp Biomed
Imaging. (2010) 436–439

14. Liu, Y., Foteinos, P.A., Chernikov, A.N., Chrisochoides, N.: Mesh deformation-
based multi-tissue mesh generation for brain images. Eng. Comput. (Lond.) 28(4)
(2012) 305–318

15. Zeng, W., Guo, R., Luo, F., Gu, X.: Discrete heat kernel determines discrete
riemannian metric. Graph. Models 74(4) (July 2012) 121–129



A Heat Kernel based Cortical Thickness Estimation Algorithm 13

16. Chung, M.K., Robbins, S.M., Dalton, K.M., Davidson, R.J., Alexander, A.L.,
Evans, A.C.: Cortical thickness analysis in autism with heat kernel smoothing.
NeuroImage 25(4) (2005) 1256 – 1265

17. Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances.
IEEE Trans Pattern Anal Mach Intell 33(5) (May 2011) 1065–1071

18. Sharma, A., Horaud, R.P., Mateus, D.: 3D shape registration using spectral graph
embedding and probabilistic matching. Image Processing and Analysing With
Graphs: Theory and Practice (2012) 441–474

19. Lederman, C., Joshi, A., Dinov, I., Vese, L., Toga, A., Van Horn, J.D.: The gen-
eration of tetrahedral mesh models for neuroanatomical MRI. Neuroimage 55(1)
(Mar 2011) 153–164

20. Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.T.: Volumetric harmonic
brain mapping. In: Biomedical Imaging: From Nano to Macro, 2004. ISBI 2004.
IEEE International Symposium on. (Apr. 2004) 1275–1278

21. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W.,
Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging
initiative. Neuroimaging Clin. N. Am. 15(4) (Nov 2005) 869–877

22. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation,
flattening, and a surface-based coordinate system. NeuroImage 9(2) (1999) 195 –
207

23. Nichols, T., Hayasaka, S.: Controlling the familywise error rate in functional neu-
roimaging: a comparative review. Stat Methods Med Res 12(5) (Oct 2003) 419–446

24. Wang, Y., Shi, J., Yin, X., Gu, X., Chan, T.F., Yau, S.T., Toga, A.W., Thompson,
P.M.: Brain surface conformal parameterization with the Ricci flow. IEEE Trans
Med Imaging 31(2) (Feb 2012) 251–264


