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Abstract. In this paper, we introduce theories and algorithms in con-
formal geometry, including Riemann surface, harmonic map, holomor-
phic 1-form, and Ricci flow, which play important roles in computational
anatomy. In order to study the deformation of brain surfaces, we intro-
duce the multivariate tensor-based morphometry (MTBM) method for
statistical computing. For application, we introduce our system for de-
tecting Alzheimer’s Disease (AD) symptoms on hippocampal surfaces
with an automated surface fluid registration method, which is based on
surface conformal mapping and mutual information regularized image
fluid registration. Since conformal mappings are diffeomorphic and the
mutual information method is able to drive a diffeomorphic flow that
is adjusted to enforce appropriate surface correspondences in the sur-
face parameter domain, combining conformal and fluid mappings will
generate 3D shape correspondences that are diffeomorphic. We also in-
corporate in the system a novel method to compute curvatures using
surface conformal parameterization. Experimental results in ADNI base-
line data diagnostic group difference and APOE4 effects show that our
system has better performance than other similar work in the literature.

1 Introduction

Conformal structure is an intrinsic feature of a metric surface. All oriented sur-
faces have conformal structures. Many recent researches have used algorithms
from conformal geometry for computational analysis of brain anatomy. For brain
surface flattening [7] and brain surface parameterization research, Hurdal et al.
[11] reported a discrete mapping approach that uses circle packings to produce
”flattened” images of cortical surfaces on the sphere, the Euclidean plane, and
the hyperbolic space. The maps obtained are quasi-conformal approximations
of classical conformal maps. [2] implemented a finite element approximation for
parameterizing brain surfaces via conformal mappings. Gu et al. [8] proposed a
method to find a unique conformal mapping between any two genus zero man-
ifolds by minimizing the harmonic energy of the map. The holomorphic 1-form
based conformal parameterization [18] can conformally parameterize high genus
surface with boundaries but the resulting mappings have singularities. The Ricci



flow method [17] can handle surfaces with complicated topologies (boundaries
and landmarks) without singularities.

In general, in order to study the deformation of cortical surfaces, there ex-
ist two different approaches, deformation-based morphometry (DBM) [5] and
tensor-based morphometry (TBM) [6]. One advantage of TBM for surface mor-
phometry is that it can use the intrinsic Riemannian surface metric to charac-
terize local changes. [12, 20] proposed a new multivariate TBM framework for
surface morphometry. MTBM computes statistics from the Riemannian metric
tensors that retain the full information in the deformation tensor fields, thus is
more powerful in detecting surface differences [20].

Using holomorphic 1-forms, a global conformal parameterization can be de-
veloped to conformally map a surface to a rectangular domain in the Euclidean
plane. The mutual information (MI) method has been widely used to drive a
diffeomorphic flow in image registration. By adjusting the mutual information
method to enforce appropriate surface correspondences in the parameter domain,
any scalar-valued signals defined on the surfaces can also be aligned using the
same flow field. Conformal maps and fluid registration techniques can be com-
bined to avoid having to define a large set of manually-defined landmarks. Since
they generate diffeomorphic mappings, conformal and fluid mappings together
could generate 3D shape correspondences that are diffeomorphic (i.e., smooth
one-to-one correspondences). In [16], Wang et al. proposed an automated surface
fluid registration method based on conformal mapping and mutual information
regularized image fluid registration and applied it to register human faces and
hippocampus. Here we develop a system based on this technique for studying
hippocampus in Alzheimer’s Disease and incorporate a novel method to compute
surface curvatures as proposed in [13]. Our major contributions can be summa-
rized as: (1). Introduction of a new stable method to compute surface curvatures.
(2). An automated hippocampal surface segmentation and registration system
validated in ADNI baseline data. (3). The system will be publicly available [21].
Last, although the current system finds applications in AD detection, it is a
general method which may be applied to many other applications.

2 Theoretical Background

Here we briefly introduce some theories in conformal geometry. For details, we
refer readers to [10] for algebraic topology and [9] for differential geometry.

2.1 Riemann Surface

Let S be a surface in R3 with an atlas {(Uα, zα)}, where (Uα, zα) is a coordinate
chart defined on S. The atlas thus is a set of consistent charts with smooth
transition functions between overlapping charts. Here zα : Uα → C maps an
open set Uα ⊂ S to a complex plane C. If on any chart (Uα, zα) in the atlas,
the Riemannian metric or the first fundamental form can be formulated
as ds2 = λ(zα)2dzαdz̄α, and the transition maps zβ ◦ z−1α : zα(Uα

⋂
Uβ) →

zβ(Uα
⋂
Uβ) are holomorphic, the atlas could be called conformal. Given a

conformal atlas, a chart is compatible with the atlas if adding this chart still
generates a conformal atlas. A conformal structure is obtained by adding all



possible compatible charts to a conformal atlas. A Riemann surface is a surface
with a conformal structure. All metric surfaces are Riemann surfaces. Following
the uniformization theorem [1], we can embed any Riemann surface onto one of
the three canonical surfaces: the sphere S2 for genus zero surfaces with positive
Euler numbers, the plane E2 for genus one surfaces with zero Euler numbers, and
the hyperbolic space H2 for high genus surfaces with negative Euler numbers.

2.2 Harmonic Maps

For genus zero surfaces, the major algorithm to compute their conformal map-
ping is harmonic maps. Suppose S1, S2 are two metric surfaces embedded in R3.
φ : S1 → S2 is a map from S1 to S2. The harmonic energy, which measures the
stretching of φ, is defined as Eφ =

∫
S1
‖∇φ‖2dA. A harmonic map is a map φ

that minimizes the harmonic energy. It can be easily computed by the steepest
descent algorithm:

dφ

dt
= −∆φ (1)

The normal component of the Laplacian ∆φ is ∆φ⊥ =< ∆φ,n(φ) > n(φ). If φ
is a harmonic map, then we should have ∆φ = ∆φ⊥. Then Eq. 1 can be solved
as dφ

dt = −(∆φ−∆φ⊥). Fig. 1 (a) shows an example of the harmonic map.

2.3 Holomorphic 1-form and Slit Mapping

Let S be a surface embedded in R3 with induced Euclidean metric g. S is covered
by atlas {(Uα, zα)} and (xα, yα) is the local parameter on a chart. Suppose ω
is a differential 1-form with the representation f(xα, yα)dxα + g(xα, yα)dyα. ω
is a closed 1-form if on each parameter (xα, yα), ∂f

∂yα
− ∂g

∂xα
= 0. ω is an exact

1-form if it equals to the gradient of another function defined on S. An exact
1-form is also a closed 1-form. If a closed 1-form ω satisfies ∂f

∂xα
+ ∂g

∂yα
= 0,

then ω is a harmonic 1-form. A holomorphic 1-form is a complex differential
form τ = ω+

√
−1∗ω, where ω is a harmonic 1-form and ∗ω = −g(xα, yα)dxα +

f(xα, yα)dyα is the conjugate of ω, which is also a harmonic 1-form. Fig. 1 (b)
shows an example of the holomorphic 1-form. Fix a point p0 on the surface, for
any point p ∈ S, let γ be an arbitrary path connecting p0 and p, the mapping

φ(p) = e
∫
γ
τ is called slit mapping. Fig. 1 (c) shows the result of slit mapping.

2.4 Ricci Flow

The Ricci flow is the process to deform a metric g(t) according to its induced

Gaussian curvatureK(t), where t denotes the time parameter: dg(t)dt = −K(t)g(t).
There is an analog between Ricci flow and the heat diffusion process. When Ricci
flow converges, the metric g(t) at time t is conformal to the original metric and
the Gaussian curvature is constant everywhere. Fig. 1 (d) and (e) show the
results of the Euclidean and hyperbolic Ricci flow, respectively.

2.5 Multivariate Tensor Based Morphometry

Suppose φ : S1 → S2 is a map from surface S1 to surface S2. The derivative map
of φ is the linear map between the tangent spaces, dφ : TM(p) → TM(φ(p)),
induced by the map φ, which also defines the Jacobian matrix of φ. Let J be the



Fig. 1. Various conformal parameterization results.

Jacobian matrix and define the deformation tensors as S = (JTJ)
1
2 . Instead of

analyzing shape change based on the eigenvalues of the deformation tensors, a
new family of metrics, the ”Log-Euclidean metrics” [3], which are computed by
inverse of matrix exponential, are considered. Hotelling’s T 2 test is applied on
sets of values in the Log-Euclidean space of the deformation tensors. Given two
groups of n-dimensional vectors Si, i = 1, ..., p, Tj = 1, ..., q, let S̄ and T̄ be the
means of the two groups and

∑
is the combined covariance matrix of the two

groups. The Mahalanobis distance M = (logS̄− logT̄ )
∑−1

(logS̄− T̄ ) is used to
measure the group mean difference. For details of MTBM, we refer to [12, 20].

3 Applications
Conformal geometry has broad applications in medical imaging, geometric mod-
eling and many other fields. Recent years, we have applied it in brain surface
conformal parameterization [17–19], brain surface registration [16], MRI-based
biomarker detection with machine learning [22], and neonate brain study. In
this section, we highlight an automated surface registration system based on the
combination of surface conformal mapping and image fluid registration meth-
ods. Surface registration usually requires defining a lot of landmarks in order to
align corresponding functional regions. Labeling features could be accurate but
time-consuming. Here we show that surface conformal mapping could represent
surface geometric features, thus avoiding the manual definition of landmarks.

For a general surface and its conformal mapping φ : S → R2, the conformal

factor at a point p can be determined by the formulation: λ(p) = Area(Bε(p))
Area(φ(Bε(p)))

,

where Bε(p) is an open ball around p with a radius ε. The conformal factor
λ encodes a lot of geometric information about the surface and can be used
to compute curvatures and geodesic. In our system, we compute the surface
mean curvatures only from the derivatives of the conformal parameterization
as proposed in [13], instead of the three coordinate functions and the normal,
which are generally more sensitive to digitization errors. Mathematically, the
mean curvature is defined as:

H =
1

2λ
sign(φ)|∆φ|, where sign(φ) =

< ∆φ,
−→
N >

|∆φ|
(2)

In this formulation of H, we need to use the surface normal
−→
N only when com-

puting sign(φ), which takes the value 1 or -1. Thus, the surface normal does not



need to be accurately estimated and still we can get more accurate mean curva-
tures. Using the Gauss and Codazzi equations, one can prove that the conformal
factor and mean curvature uniquely determine a closed surface in R3, up to a
rigid motion. We call them the conformal representation of the surface. Since
conformal factor and mean curvature could represent important surface features
and are intrinsic to the surface, they may be used for surface registration.

After computing intrinsic geometric features, we align surfaces in the pa-
rameter domain with a fluid registration technique.Using conformal mapping,
we essentially convert the surface registration problem to an image registration
problem. In [16], Wang et al. proposed an automated surface fluid registration
method combining conformal mapping and image fluid registration. Since con-
formal mapping and MI regularized fluid registration generate diffeomorphic
mappings, a diffeomorphic surface-to-surface mapping is then recovered that
matches surfaces in 3D. In our system, we adopt their methods of conformal
mapping and fluid registration. However, our system differs from theirs in the
computation of surface features as introduced above. The new way to compute
mean curvature is more stable and less sensitive to normal computation, thus
gives better representation of the surface features for registration.

4 Experimental Results

We applied our surface registration system to study hippocampal surface mor-
phometry in AD. In our study, we tested the system on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) baseline data (http://www.loni.ucla.edu/ADNI).
The data contains 233 healthy controls, 410 subjects with mild cognitive impair-
ment (MCI), and 200 patients with AD. The hippocampal surfaces were auto-
matically segmented using FIRST (http://www.fmrib.ox.ac.uk/fsl/fsl/list.html).
FIRST is an integrated registration and segmentation tool developed as part of
the FSL library, which is written mainly by members of the Analysis Group,
FMRIB, Oxford, UK. We also took FIRST’s technique of registration for a com-
parison in our diagnostic group difference study. In the segmentation step, 1
subject in each group (AD, MCI, and control) failed probably due to the origi-
nal images’ resolution or contrast. We also manually occluded 1 subject from the
control group and 2 subjects from the MCI group because of name duplication.
For subjects with duplicated names, we retained the one which was the repeated
scan. Thus 837 subjects were involved in all the experiments in this paper.

In our system, we left two holes at the front and back of the hippocampal
surface, representing its anterior junction with the amygdala, and its posterior
limit as it turns into the white matter of the fornix. The resulting structure
can then be logically represented as an open boundary genus one surface, i.e.,
a cylinder. Then the surfaces were conformally mapped to a rectangle plane
using holomorphic 1-forms.To better visualize the matching of surface features,
we chose to encode surface features using a compound scalar function based
on the local conformal factor and the mean curvature. After the cross-subject
registration was computed with one target surface selected, we examined shape
differences using the MTBM as introduced in Sec. 2.5.



4.1 Effects of APOE4 Genotype

In [14], Morra et.al. discussed that in healthy elderly subjects, presence of the
Apolipoprotein E ε4 allele (APOE4) may be correlated with future develop-
ment of AD. In order to investigate this correlation, the authors designed two
experiments: (1) group difference between APOE4 carriers and non-carriers in
all samples; (2) group difference between APOE4 carriers and non-carriers in
subjects that have not developed AD, i.e., MCI and control groups. The exper-
iments are aimed to determine if the APOE4 allele is linked with hippocampal
atrophy in all subjects and in just the non-AD subjects, respectively. In [14], 400
subjects with 100 AD, 200 MCI, and 100 control subjects from ADNI baseline
data were studied. However, no significance was reported in [14]. In our study,
among the 837 subjects, 738 subjects have been diagnosed as APOE4 carriers
or non-carriers, 566 of which are MCI or controls. Fig. 2 shows the significance
maps for APOE4 effects. With MTBM, our system has been able to detect more
significant areas compared with [14]. The significant p-values are 0.00044 for the
all-sample experiment and 0.02073 for the non-AD experiment, respectively.

In [15], Pievani et al. designed more systematic experiments to study APOE4
effects. We will study their findings in our ongoing work.

4.2 Diagnostic Group Differences

Fig. 3 illustrates the experimental results showing difference maps among the
three diagnostic groups (AD, MCI and control). MCI is an intermediate stage
between the expected cognitive decline of normal aging and the more pronounced
decline of dementia. If MCI could be found and treated, the risk of AD will
be significantly reduced. However, at MCI stage, changes in brain surface are
not significant thus impose more difficulty on the detection. With MTBM, we
can see that, in the three experiments, our system demonstrated better results
than FIRST. Particularly, our system gave better MCI detection results when
comparing with both AD and control subjects. In the experiment, all group
difference p-maps were corrected using false discovery rate (FDR) [4]. The FDR
method decides whether a threshold can be assigned to the statistical map that
keeps the expected FDR below 5% (i.e., no more than 5% of the voxels are
false positive findings). The CDF plots show the uncorrected p-values (as in a
conventional FDR analysis). The x value at which the CDF plot intersects the
y = 20x line represents the highest statistical threshold that can be applied to
the data, for which at most 5% false positives are expected in the map. The use
of the y = 20x line is related to the fact that significance is declared when the
volume of suprathreshold statistics is more than 20 times that expected under
the null hypothesis. Table 1 gives the FDR corrected p-values comparison.

5 Conclusion and Future Work

This paper reviews some algorithms in conformal geometry and highlights an
automated surface fluid registration system. Experiments on ADNI hippocampal
dataset demonstrate our system’s stronger statistical power than other work in
the literature. Ongoing work is to apply this system to automatically map lateral
ventricle enlargements in Alzheimers disease and those at risk.



Fig. 2. Significance maps for APOE4 effects.
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