HIPPOCAMPAL SURFACE DISCRIMINATION VIA INVARIANT DESCRIPTORS OF
SPHERICAL CONFORMAL MAPS

Boris Gutman®, Yalin Wang'2, Lok Ming Lui*, Tony F. Chan', Paul M. Thompson®

! Mathematics Department, UCLA
2 Lab. of Neuro Imaging and Brain Research Institute, UCLA School of Medicine
bgutman@ucla.edu, {ylwang,malmlui,chan} @math.ucla.edu, thompson@loni.ucla.edu

ABSTRACT

Weighted spherical harmonic shape descriptors are based on the
subspaces of L?(S?) spanned by spherical harmonics of a single
degree. Such shape descriptors incorporate both shape and scal-
ing information, while preserving invariance with respect to other
non-reflexive affine transformations. Thus, their application allows
for direct comparison of shapes across subjects, resolutions and
within-subject components. On the other hand, global conformal
parametrization preserves intrinsic conformal structure and thus al-
lows for vast differences in object scaling on the 2-sphere. As a
result, surface energy is distributed more evenly across the spherical
harmonic spectrum, with the higher resolution descriptors represent-
ing regions with higher conformal factor. We applied our morphom-
etry to 96 hippocampal surfaces. The data used were 12 control and
12 Alzheimer (AD) T1 and T2 subjects. An independent-samples
t-test revealed significant differences for the change in hemispheric
shape difference in shape descriptors of degrees 3, 20, 22, 25 and 27,
with the highest p-value of .001, t = 4.019, predicting 22 out of 24
subjects’ diagnosis correctly.

1. INTRODUCTION

In brain imaging, questions of global shape patterns and hemi-
spheric shape difference often arise. Some of the problems here are
combining volume and shape differences ([1], [7]) in predictive anal-
ysis as well as finding regions of significant difference for specific
diseases [8]. In our study, we present a technique of direct multi-
resolution registration of 3D closed surfaces in the spectral domain,
which combines both scale and shape information in one measure.
The data were obtained from 12 control and 12 AD 3D T1 and T2
weighted SPGR (spoiled gradient) MRI images. The images were
then segmented via a topologically constrained mean curvature flow
algorithm based on [2] and triangulation meshes were constructed.
The meshes were mapped onto the 2-sphere according to [5] and
regularly sampled. A fast spherical harmonic transform algorithm of
the inverse conformal maps [6] was obtained, and finally spherical
harmonic shape descriptors were computed and weighted for cross-
resolution comparison. Our shape descriptors are shown to be invari-
ant under rotation and translation in the paramter space. Also, since
the conformal map completely preserves rotations in object space,
the resulting shape descriptors are theoretically invariant to all rota-
tions and translations in object space. This invariance is shown to
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hold in practice up to negligible discretization error. Thus, weighted
spherical harmonic shape descriptors make for direct surface regis-
tration both across objects and resolutions.

2. PREVIOUS WORK

Surface registration and comparison remain some of the most in-
teresting problems in medical imaging. Many “classical” methods,
such as first-order spherical harmonic ellipsoid alignment [3] and
quarternion-based alignment methods [7] provide a coarse frame-
work for pointwise registration. In applications of these methods, the
obvious means to compare surfaces is by computing displacement at
each point. The accuracy of such comparison depends on the quality
of registration and the degree of surface noise. An alternative mor-
phometry utilizes spectral representation of surface. The possibility
of making such representation invariant to rotation and translation
makes registration quality a non-issue for statistical analysis. Fur-
ther, noisy data is usually not a problem in spectral methods, since
only higher order frequencies are assumed to be affected by noise.

Gerig [3] and Shen [7] have used the first order ellipsoid method
in their anatomical surface studies. After the initial first order el-
lipsoid prealignment, Shen used a quarternion-based method to lo-
cally minimize the distance at each regularly sampled point. Fur-
ther, he used both hemispheres as one shape configuration, making
cross-hemispheric differences relevant in the pointwise registration.
Promising discrimination results were achieved with this method.
The drawback of this method lies in that only the space of rotations
and translations was considered for the final registration. Further, the
first ellipsoid may not always give correct prealignment, especially
if two or more of the axes have the same length.

Other methods have used a more generalized space of tranfor-
mations. In a recent work, Csernansky [1] used large diffeomor-
phic (differentiably bijective with differentiable inverse) mapping
following Miller [4] to register hippocampal surfaces in a preclin-
ical Alzheimer study. Here, a template is chosen at random to which
the data surfaces are mapped. The average inverse mapping is then
computed and its image of the template serves as the reference shape
average, or the new template. Although a powerful mathematical
technique it is template-dependent and thus registration results may
vary with varying templates. Further, such a technique assumes a
reasonable spatial pre-alignment. By contrast, spherical harmonic
shape descriptors assume no pre-alignment and are completely in-
trinsic to the original surface.

Of course, one major drawback of our method in comparison
with those above is its maladaptedness to detecting specific regional
variation. In the concluding section we mention some possible sta-
tistical and analytic solutions to this problem.
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Fig. 1. Two subjects: (a) and (b) are right and left hippocampal
surfaces of a male AD subject and (c) and (d) are that of a control
subject

3. SPHERICAL CONFORMAL PARAMETRIZATION

In this section we give the idea behind the conformal mapping al-
gorithm following X. Gu, Y. Wang, et al. [5]. The idea is to first find
a homeomorphism 7 : M — S? and then optimize it by minimizing
harmonic energy. Here M is the manifold represented by a triangula-
tion mesh of the object surface embedded in R3. The mesh is defined
by (K, g) where K is a simplicial complex and g : |K| — R3isa
function mapping the vertices of K to R® . For simplicity, consider
a scalar piecewise-linear continuous function f : M — R . Let
u,v € K be vertices, {u,v} € K the edge formed by u, v. Define
the inner product on the space of PL functions by

<hgs=5 3 hunlf) - F0)g(w) - o(v)

{u,v}eK

where k. . is string energy. By choosing the correct string energy
constants, harmonic energy is defined by

E(f)=<ff>= Y kuollf(u) = f)|

{u,w}eK

Vector functions on M to are defined by 7 = (f1, fo, f3) Vector
harmonic energy is

B(J) =Y E(f)

Minimizing the harmonic energy ensures that the map is harmonic
i.e. that the laplacian is equal to zero. That the map is harmonic
guarantees its conformality. Here, the initial homeomorphism used
is the Gauss map defined by 7(1}) = W (v),v € M. For details
on the algorithm minimizing harmonic energy and additional con-
straints placed on the function to ensure convergence as well as an
explanation in a more general setting, see [5].

4. SPHERICAL HARMONICS

A function f : S* — C is a spherical harmonic if it is the eigen-
function of the Laplacian operator Af = Af where A is a scalar
multiplier. A countable set of spherical harmonics provides an or-
thonormal basis for the space of square-integrable functions on the
sphere L?(S?). If we parameterize the sphere with a latitudinal co-
ordinate 0 and a colatitudinal coordinate ¢, spherical harmonics are
expressed explicitly:

2+ 1) —m)

! m im
Y;"™(0,6) = 1+ m)] P™(cosf)e™?

for degree and order m, ! € Z,
ciated Legendre polynomial.
Let f be in L?(S?). For a given order [ and degree m, a spherical

~

harmonic coefficient is defined by f(I,m) =< f,Y;™ >, where
< f,g > is the usual L? inner product in spherical coordinates. The
spherical harmonic expansion is the series

m| <1, where P/ (z) is the asso-

l

F0,6)=3" 3" F,m)Yi™ (0, ¢)

The set of all coefficients f (I, m) is called the discrete spherical har-
monic transform of f. In practice, the transform is computed with
a fast algorithm described in [6], which relies on regular mesh sam-
pling. The transform is only computed up to a certain degree [ < B,
where the B is the bandwidth.

5. SPHERICAL HARMONIC DESCRIPTORS

Let © : S* — R3 represent a surface conformal parametriztion.
We regularly sample the discrete map on the sphere using a matching
area algorithm and linear interpolation. Next, we compute the spher-
cal harmonic transform of each component scalar map. The result is
a set of vector spherical harmonic coefficients in C*

{Tm)} = {[@,m),&(,m),esl,m)" : m| <1< B}

where B is the bandwidth. Next, we obtain the unweighted spherical
harmonic descriptors:

s(l) = Z Y llamP

Invariance of these descriptors is shown as follows. First, the
norm of a function in L?(S?) does not change with rotation. Sec-
ond, for a spherical function p; € Span{Y;™",Y,”"** ... V}'}, and
an element of the rotation group g € SO(3) and its associated op-
erator A(g), the transformed function remains in the same subspace
of L*(S%) : Ag)(p1) € Span{¥; ', ¥; "1, . Y} . Thus,

S ECm)P = = A E)IE = S 1A(G) @)1 m)?

m=—1 m=—1

Further, the linearity of A(g) implies f(6,¢) = Zf:ol p =
A9)[f(0,0)] = 3175" Alg)(pi). From this it is clear that our de-
scriptors are invariant as each scalar component norm must remain
invariant within each subspace. Translational invariance is achieved

1317



Fig. 2. T1 and T2 reconstructions from frequencies 20,22,25,27 of
the control subject from figure 1: (a) T1 left hippocampus (b) T2 left
hippocampus (c) T1 right hippocampus (d) T2 right hippocampus

trivially by ignoring the zeroth coefficient, which is alone responsi-
ble for translation. Thus, we produce a quasi-unique multi-resolution
global shape representation. Now, surface comparison is possible di-
rectly at each resolution level.

To enable meaningful cross-resolution comparison, we randomly
select a subgroup of N subjects and compute normalization con-
stants for each degree:

043

i=1

B-1
> si(k)/si(1)
k=1

Our final weighted shape descriptors are defined as n(l) =
s(1)C(1). Such descriptors allow for measure of relative resolution
difference within and between surfaces while incorporating scaling
information. These may be especially useful for large-population
studies of global shape change. Because the conformal map pre-
serves the intrinsic conformal structure of a surface, regional differ-
ences may be estimated heuristically. Variation in regions of higher
conformal factor corresponds to variation in higher degree shape de-
scriptors.

6. EXPERIMENTAL RESULTS

Our experimental results confirm rotational invariance up to dis-
cretization and sampling error. Relative error due to a random rota-
tion is within 1 %.

Initially, we ran a 3-way ANOVA on T2 - T1 differences of
normalized descriptors with hemisphere, diagnosis and frequency
as factors. We then examined hemisphere - frequency interaction
at each of the 255 frequencies. Frequencies 3, 20, 22, 25 and 27
gave the most significant interaction between diagnosis and hemi-
sphere. Independent samples t-tests between control and AD sub-
jects for hemispheric differences at significant degree combinations

Fig. 3. T1 and T2 reconstructions from frequencies 20,22,25,27 of
the AD subject from figure 1: (a) T1 left hippocampus (b) T2 left
hippocampus (c) T1 right hippocampus (d) T2 right hippocampus

are displayed in figure 4. The most significant combination was
$(20) — s(3)/2 (df =22, t=4.019, P = .001).

Next, a 3-Way ANOVA as above was ran on just the significant
frequencies we mentioned. Here, we see that there is a significant
three-way interaction between frequency, diagnosis and hemishpere,
making cross-resolution comparison useful. The significant results
are for interaction between diagnosis and hemisphere (df = 1, F =
20.957, oo < .001) and interaction between frequency, diagnosis and
hemisphere (df = 4, F =3.233, o = .013). Here, ”df” stands for “de-
grees of freedom,” ”F” is the value from the F-distribution (a contin-
uous distribution which arises when comparing variances between
two samples) based on sums of squares and "o is the tail of the
distribution at the given F-value.

From the interaction plots in figure 5, we see that the three-way
interaction in the ANOVA test is due entirely to descriptor of de-
gree 3. At this frequency, the magnitude change in AD subjects is
roughly equal in both hemispheres, while in control subjects it is
much greater in the right hemisphere. The exact opposite occurs at
frequency 20, and a pattern similar to 20 is seen in the other signifi-
cant frequencies. An explanation for this may be as follows. Change
at frequency 3 is more sensitive to a change in the overall volume of
the object, while change at the mid-level frequencies corresponds to
change in a region with a high conformal factor. Thus, results above
indicate a bilateral volume reduction for AD and a greater volume
reduction in the right hemisphere for control subjects. Conversely,
the reduction of the extreme conformal factor area is bilateral in con-
trol subjects and increased in the right hemisphere in AD subjects.
This hypothesis remains to be confirmed through spatial registration
of our surfaces and compared with other reports on AD.
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7. CONCLUSION AND FUTURE WORK

Spherical harmonic shape descriptors provide a reasonable
means of surface dicrimination in disease studies. Unlike other
morphometric techniques, they allow cross-resolution comparison,
which has been shown in this study to be significant. Further, for
studies involving multiple closed surfaces per subject, such as the
left and right hippocampus, cross-component comparison is just as
trivial as cross-subject analysis, giving rise to a new set of data. In
experiments, our global metric outperformed many localized metrics
described above, giving purpose to future refinements of our method.

To further develop use of spherical harmonics as a means of shape
representation, we would like to:

(1)Develop a direct registration method via spherical cross-
correlation.

(2)Develop a spherical harmonic representation which is intrinsi-
cally optimal with respect to the conformal structure of the surface,
thus integrating the theory of spherical harmonics with global con-
formal mapping.

(3)Apply within-level PCA-alignment of spherical harmonics
and use coarse spatial registration for regional variation detection.

Independent Samples Test
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Fig. 4. T-Tests at degrees 3,20,22,25 and 27
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