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ABSTRACT

In medical imaging, parameterized 3D surface models are of

great interest for anatomical modeling and visualization, sta-

tistical comparisons of anatomy, and surface-based registra-

tion and signal processing. By solving the Yamabe equation

with the Ricci flow method, we can conformally parameter-

ize a brain surface via a mapping to a multi-hole disk. The

resulting parameterizations do not have any singularities and

are intrinsic and stable. To illustrate the technique, we com-

puted parameterizations of cortical surfaces in MRI scans of

the brain. We also show the parameterization results are con-

sistent with constraints imposed on the mappings of selected

landmark curves, and the resulting surfaces can be matched

to each other using constrained harmonic maps. Unlike pre-

vious planar conformal parameterization methods, our algo-

rithm does not introduce any singularity points.

Index Terms— Biomedical Imaging, Brain Mapping, Sur-

face Parameterization, Ricci Flow

1. INTRODUCTION

Surface-based modeling is valuable in brain imaging to help

analyze anatomical shape, to statistically combine or compare

3D anatomical models across subjects, and to map and com-

pare functional imaging parameters localized on anatomical

surfaces. Parameterization of these surface models involves

computing a smooth (differentiable) one-to-one mapping of

regular 2D coordinate grids onto the 3D surfaces, so that nu-

merical quantities can be computed easily from the result-

ing models [1]. The mesh-based work contrasts with implicit

methods, which typically define a surface as the level set of

a higher-dimensional function [2]. Relative to level set meth-

ods, surface meshes can allow regular 2D grids to be imposed

on complex structures, transforming a difficult 3D problem
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into a 2D planar problem, with simpler data structures, dis-

cretization schemes, and rapid data access and navigation.

Here we present a new method to parameterize brain surfaces

based on algebraic functions. We find a planar conformal pa-

rameterization without any singularities by solving the Yam-

abe equation with the Ricci flow method. This method can

compute conformal invariants of brain surfaces which can be

used to compare and classify brain surface structures. Com-

pared with previous brain conformal parametrization work [3,

4], the parameterization provided by our algorithm does not

have any zero points so there is less area distortion. By solv-

ing a harmonic map in the parameter domain, our algorithm

provides smooth correspondence fields for matching of dif-

ferent brain surfaces while explicitly matching labeled sets of

landmark curves.

1.1. Previous Work

Brain surface parameterization has been studied intensively.

Schwartz et al. [5], and Timsari and Leahy [6] computed quasi-

isometric flat maps of the cerebral cortex. Drury et al. [7]

presented a multiresolution method for flattening the cerebral

cortex. Hurdal and Stephenson [8] report a discrete mapping

approach that uses circle packings to produce “flattened” im-

ages of cortical surfaces on the sphere, the Euclidean plane,

and the hyperbolic plane. The maps obtained are quasi-conformal

approximations of classical conformal maps. Haker et al. [9]

implement a finite element approximation for parameterizing

brain surfaces via conformal mappings. They select a point on

the cortex to map to the north pole of the Riemann sphere and

conformally map the rest of the cortical surface to the com-

plex plane by stereographic projection of the Riemann sphere

to the complex plane. Gu et al. [10] propose a method to find a

unique conformal mapping between any two genus zero man-

ifolds by minimizing the harmonic energy of the map. They

demonstrate this method by conformally mapping a cortical

surface to a sphere. Ju et al. [11] present a least squares con-

formal mapping method for cortical surface flattening. Joshi

et al. [12] propose a scheme to parameterize the surface of

the cerebral cortex by minimizing an energy functional in the
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pth norm. Wang et al. [3, 4] have used holomorphic 1-forms

to parameterize anatomical surfaces with complex (possibly

branching) topology. Recently, Ju et al. [13] reported the

results of a quantitative comparison of FreeSurfer [14], Cir-

clePack, and least squares conformal mapping (LSCM) with

respect to geometric distortion and computational speed.

1.2. Theoretical Background

Suppose M is a surface embedded in R
3, then it has the nat-

ural induced Euclidean metric, denoted by g. Suppose g̃ is

another Riemannian metric on M , we say it is conformal to

g, if the two metrics differ by a scalar function u : M → R,

namely g̃ = e2ug.

For the purpose of brain mapping, we typically want to

flatten the cortical surface onto the plane, with a specific set of

anatomical landmarks are mapped to specific locations, such

as circles in the flattened space;, furthermore, the mapping is

required to be conformal. We formulate this problem as find-

ing a conformal metric that induces the prescribed curvature,

such that all interior points have zero Gaussian curvature, and

the boundary points have constant geodesic curvature. This

can be formulated rigorously in terms of the Yamabe equa-

tion [15],

⎧⎨
⎩

K̃ = 0
Δu − K + e2uK̃ = 0
kg̃|∂M = const

(1)

The Yamabe equation can be solved using the Ricci flow

method,
du(t)

dt
= K̃ − K(t). (2)

It has been proven that surface Ricci flow with normalized

total area will converge to the desired metric, and the conver-

gence is exponentially fast.

In practice, all surfaces are approximated by discrete piece-

wise polygonal surfaces so we developed a discrete Ricci flow

method that applies to triangulated meshes. We associate a

circle of radius γi with vertex vi. Suppose on edge [vi, vj ],
two circles intersect each other with intersection angle φij ,

then the length of the edge can be derived from cosine law as

lij =
√

γ2
i + γ2

j + 2 cos φijγiγj

Therefore, the circle radii and the intersection angles deter-

mine a metric on the mesh, which is called the circle packing
metric. By using the circle packing metric, the conformal de-

formation can be approximated by changing the vertex radii

while preserving the intersection angles. The discrete Ricci

flow can be defined as

dγi

dt
= −(K̃i − Ki)γi, (3)

where K̃ is the target curvature at the vertex vi.

Let ui = ln γi, u = (u1, u2, · · · , un), where n is the

number of vertices. Then the following discrete Ricci energy
is well defined

f(u) =
∫ u

u0

n∑
i=1

Kidui. (4)

where u0 = (0, 0, · · · , 0). The integration path is chosen

arbitrarily, namely, the energy is path independent. Because

scaling does not affect the curvature, we confine the u to lie

in the sub-linear space
∑

ui = 0. This energy is strictly con-

vex in this space, therefore it has a unique global minimum.

This global minimum is exactly the desired metric for the pre-

scribed curvature. The discrete Ricci flow 3 is the negative

gradient flow of the discrete Ricci energy.

In current work, we propose to use the Newton method

which is quadratically convergent, and much faster than pre-

vious Ricci flow methods. The Newton method requires com-

putation of the Hessian matrix of the energy,

Hij =
∂Ki

∂uj
.

1.3. Conformal Mapping to a Multi-Hole Punctured Disk

The algorithm is equivalent solving Equation 1 that describes

a conformal deformation. We use the Ricci flow method [16]

to solve this equation.

Algorithm 1 Conformal Mapping to a Multi-hole Punctured
Disk
Input: mesh M , step length ε, energy difference threshold
δK;
Output: �h : M → D. Here D ∈ R2, and D is a multi-hole
disk.

1. Computing initial radii γi for each vertex, and angle
φij for each edge eij , such that lij = γ2

i +γ2
j−2γiγjcosφij .

2. Compute boundary loops, denoted as Γ0, Γ1, ...,Γn. The
Γ0 is the exterior boundary.

3. Set target Gaussian curvature of each interior vertex to
be zero, K̃i = 0.

4. For any vertex on vk ∈ Γ0, set its target Gaussian cur-
vature to K̃k = 2π

|Γi| , where |Γ0| denotes the number of
vertices in Γ0.

5. For any vertex on vk ∈ Γi, i �= 0, set its target Gaus-
sian curvature to K̃k = − 2π

|Γi| , where |Γi| denotes the
number of vertices in Γi.

6. Update the vertex radii with the Ricci flow,

γi(t + 1) = γi(t) + ε × (K̃i(t) − Ki(t)) × γi(t).
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7. Update the target Gaussian curvature for boundary ver-
tices, suppose vk ∈ Γi, suppose ek−1,k, ek,k+1 ∈ Γi,
then let Si = Σepq∈Γi

lpq , then

K̃k =
lk−1,k + lk,k+1

2Si
× Ci,

where Ci is Ci =
{

2π, i = 0
−2π, i �= 0 .

8. Repeat step 6 and 7 until the maximal Gaussian curva-
ture error, maxi|Ki − K̃i|, is less than δK.

Fig. 1. Illustrates conformal maps of the same brain with var-

ious landmark sets. Each of the three rows shows the brain

with four, seven and twelve landmarks, respectively. The

landmark curves are labeled by thick blue lines. The last col-

umn show their parameterization results mapping these sur-

faces to a 3-hole, 6-hole and 11-hole disk, respectively.

1.4. Surface Matching with a Punctured Disk Parameter-
ization

After the computation of conformal parameterizations for open

boundary genus zero surfaces with a multiple-hole punctured

disk, we can compute the direct correspondence of two sur-

faces by solving a constrained harmonic mapping problem [4].

Given two surfaces S1 and S2, their punctured disk parame-

terizations are τ1 : S1 → R2 and τ2 : S2 → R2, we want to

compute a map, φ : S1 → S2. Instead of directly computing

of φ, we can easily find a harmonic map between the parame-

ter domains. We look for a harmonic map, τ : R2 → R2, such

that τ ◦ τ1(S1) = τ2(S2), τ ◦ τ1(∂S1) = τ2(∂S2),Δτ = 0.

Then the map φ can be obtained by φ = τ1 ◦ τ ◦ τ−1
2 . Since

τ is a harmonic map while τ1 and τ2 are conformal map, the

resulting φ is a harmonic map.

Fig. 2. Illustrates direct surface matching between two differ-

ent cerebral cortical surfaces while explicitly matching land-

mark curves. (a)-(b) show the left hemisphere of a cortical

surface with four labeled landmarks and (c) shows its con-

formal map to a 3-hole disk. (d)-(e) show another left hemi-

sphere model of the cerebral cortex with the same landmarks

labeled and (f) shows its conformal map to a 3-hole disk. (g)

is the parameterization of surface (d)-(e) after a constrained

harmonic map from (f) to (c) is built. (h)-(m) show a morph-

ing sequence from surface (a)-(b) to surface (d)-(e). (j)-(l) are

the intermediate shapes when we linearly interpolate a surface

correspondence vector field between the two surfaces (h) and

(m). Although the cortical surface shape changes consider-

ably, the relative positions of the selected landmark curves do

not change.

2. EXPERIMENTAL RESULTS

We tested our algorithm with cortical surfaces extracted from

3D MRI scans of the brain and we also tested its ability to ac-

commodate constraints with different landmark sets. Specifi-

cally, each of the rows in Figure 1 shows a cortical left hemi-

sphere cortex labeled by four, seven and twelve landmarks, re-

spectively. After cutting along these landmark curves, the cor-
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tical surface becomes an open boundary high genus surface.

Our algorithm conformally maps the surface to a 3-hole disk

(first row), 6-hole disk (second row) and 11-hole disk (third

row). The perimeter of the corpus callosum is mapped to the

exterior circular disk boundary and other landmark curves are

mapped to the disk’s inner circle boundaries.

Figure 2 illustrates how our algorithm is used to match

two left hemisphere cortical surfaces. As shown in Figure 2(a),

(b), (d) and (e), we selected four major landmark curves on

two different cortices, to illustrate the approach (thick lines

show the precentral and postcentral sulci, the superior tem-

poral sulcus, and the corpus callosum boundary at the mid-

sagittal plane). By cutting the surface along these landmark

curves, we obtain two genus-3 open-boundary surfaces. Fig-

ure 2(c) and (f) show their conformal map to a 3-hole disk.

Because of the shape difference between two cortices, the

centers and the radii of inner circles are different. By com-

puting a constrained harmonic map from (f) to (c), we have

a new parameterization (Figure 2(g)) of the cortex in the sec-

ond row ((d) and (e)). The inner circle centers and radii of the

new parameterization are identical to the parameterization in

(c). With the new 3-hole disk as the canonical space, we can

easily compute a direct surface correspondence between two

surfaces (a) and (d). Because the inner circles and exterior cir-

cle are identical for the two parameterizations, the landmark

curves lying in the surface are exactly matched to each other.

Figure 2 (h)-(m) illustrate the direct surface correspondence

by morphing between these two cortical surfaces. Figure 2(h)

and (m) and surfaces (a) and (d) respectively, viewed from a

different viewpoint. (j), (k) and (l) are the intermediate shapes

when linearly interpolating the surface correspondence vector

field between (h) and (m). We can see that although surface

shape changes substantially from (h) to (m), the relative lo-

cations of the three landmarks remain the same. This veri-

fies that our algorithm provides a method to perform surface

matching, while explicitly matching sulcal curves or, poten-

tially, any other landmarks lying in the surface. Although

some previous approaches [3, 4] had the same motivation as

ours, because their work introduced singularities at the so-

called zero points, so their surface matching results have some

errors and inevitable distortions in the areas around the zero

points. Our approach provides an improved method for global

surface matching with exact landmark matching capability.

3. CONCLUSION AND FUTURE WORK

In this paper, we presented a brain surface conformal param-

eterization method based on algebraic functions. With the

Ricci flow method, we solved the Yamabe equation to obtain

a conformal deformation that conformally maps open bound-

ary surfaces to multi-hole disk. We tested our algorithm on

the hippocampus and surface models of the cerebral cortex,

including major cortical sulci as anatomical landmark con-

straints. Used as a canonical space, the multi-hole disk con-

formal parameterization provides a brain surface matching

approach that can exactly match landmark curves lying on

the surfaces. Compared with other work that conformally

maps brain surfaces to parallelograms, our algorithm offers

some advantages because it does not introduce any singular

points. Our future work will include empirical application of

the Ricci flow concept to medical applications in computa-

tional anatomy, including the detection of population differ-

ences and the tracking of brain change over time.
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