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Abstract. Brain Cortical surface registration is required for inter-subject stud-
ies of functional and anatomical data. Harmonic mapping has been applied for
brain mapping, due to its existence, uniqueness, regularity and numerical stabil-
ity. In order to improve the registration accuracy, sculcal landmarks are usually
used as constraints for brain registration. Unfortunately, constrained harmonic
mappings may not be diffeomorphic and produces invalid registration. This work
conquers this problem by changing the Riemannian metric on the target corti-
cal surface to a hyperbolic metric, so that the harmonic mapping is guaranteed
to be a diffeomorphism. With landmarks delineated as boundary condition, it is
possible to be integrated with landmark matching. The computational algorithms
are based on the Ricci flow method and hyperbolic heat diffusion. Experimen-
tal results demonstrate that, by changing the Riemannian metric, the registrations
have higher qualities in terms of landmark alignment, curvature matching, area
distortion and overlapping of region of interests.

1 Introduction

Morphometric and functional studies of human brain require that neuro-anatomical data
from a population to be normalized to a standard template. The purpose of any regis-
tration methods is to find a map that assigns a correspondence from every point in a
subject brain to a corresponding point in the template brain. Due to the anatomical fact,
the mapping is required to be smooth and bijective, namely, diffeomorphic. Since cy-
toarchitectural and functional parcellation of the cortex is intimately related the folding
of the cortex, it is important to ensure the alignment of the major anatomic features,
such as sucal landmarks.

Harmonic mapping has been commonly applied for brain cortical surface registra-
tion. Physically, a harmonic mapping minimizes the “stretching energy”, and produces
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smooth registration. The harmonic mappings between two hemsiphere cortical surfaces,
which were modeled as genus zero closed surfaces, are guaranteed to be diffeomorphic,
and angle-preserving [6]. Furthermore, all such kind of harmonic mappings differ by
the Möbius transformation group. Numerically, finding a harmonic mapping is equiva-
lent to solve an elliptic partial differential equation, which is stable in the computation
and robust to the input noises.

Unfortunately, harmonic mappings with constraints may not be diffeomorphic any
more, and produces invalid registrations with flips. In order to overcome this shortcom-
ing, in this work we propose a novel brain registration method, which is based on hy-
perbolic harmonic mapping. Conventional registration methods map the template brain
surface to the sphere or planar domain [6, 7], then compute harmonic mappings from the
source brain to the sphere or planar domain. When the target domains are with compli-
cated topologies, or the landmarks, the harmonic mappings may not be diffeomrophic.
In contrast, in our work, we slice the brain surfaces along the landmarks, and assign
a unique hyperbolic metric on the template brain, such that all the boundaries become
geodesics, harmonic mappings are established and guaranteed to be diffeomorphic.

In addition to the guaranteed diffeomorphism, we also addressed a curvature based
landmark align method to obtain a geometric meaningful registration. i.e. it maps sim-
ilarly shaped segments of sulcal curves to each other. We sample the landmark curves
and record their curvature information, then use a Dynamic Time Warping algorithm
(DTW) to align them together. This step achieves a geometric meaningful registration
for landmarks compare to naive arc length interpolation.

In summary, the main contributions of the current work are as follows: First, intro-
duce a novel brain registration method based on hyperbolic harmonic maps, the reg-
istration preserves all the merits of conventional harmonic brain registration methods,
such as existence, uniqueness, regularity, numerical stability and so on. Second, develop
a novel algorithm for computing harmonic mappings on hyperbolic metric using non-
linear heat diffusion method and Ricci flow. Third, develop a curvature based landmark
matching method to achieve a geometric meaningful landmark registration. The paper
is organized as follows: this section focuses on the motivation and introduction; next
section briefly reviews the most related works; section 3 gives theoretic background for
hyperbolic harmonic mapping; section 4 details the computational algorithms; section
5 reports our experimental results; section 6 summarizes the current work and points
out future research directions.

2 Previous Works

In computer vision and medical imaging research, surface conformal parameterization
with the Euclidean metric have been extensively studied [1, 26, 23]. Wang et al. [21]
studied brain morphology with Teichmüller space coordinates where the hyperbolic
conformal mapping was computed with the Yamabe flow method. Zeng [26] proposed
a general surface registration method via the Klein model in the hyperbolic geometry
where they used the inversive distance curvature flow method to compute the hyperbolic
conformal mapping.
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Various non-linear brain volume-based registration models [15, 24] have been de-
veloped. However, early research [5, 18] has demonstrated that surface-based approaches
may offer advantages as a method to register brain images. To register brain surfaces, a
common approach is to compute a range of intermediate mappings to some canonical
parameter space [2, 25]. A flow, computed in the parameter space of the two surfaces,
then induces a correspondence field in 3D [7, 17]. This flow can be constrained using
anatomical landmark points or curves [8, 10], by sub-regions of interest [13], by us-
ing currents to represent anatomical variation [3, 20], or by metamorphoses [19]. There
are also various ways to optimize surface registrations [12, 16]. Overall, finding dif-
feomorphic mappings between brain surfaces is an important but difficult problem. In
most cases, extra regulations, such as inverse consistency [9, 16], have to be enforced
to ensure a diffeomorphism. Since the proposed work offers a harmonic map based
scheme for diffeomorphisms which guarantees a perfect landmark curve registration
via enforced boundary matching, the novelty of the proposed work is that it facilitates
diffeomorphic mapping between general surfaces with delineated landmark curves.

3 Theoretic Background

This section briefly introduces the theoretic foundations for the current work. We refer
readers to [14] for more thorough exposition of harmonic maps, [26] for Ricci flow.

Hyperbolic Harmonic Map Suppose S is an oriented surface with a Riemannian metric
g. One can choose a special local coordinates (x, y), the so-called isothermal param-
eters, such that g = σ(x, y)(dx2 + dy2) = σ(z)dzdz̄, where the complex parameter
z = x+ iy, dz = dx+ idy. An atlas consisting of isothermal parameter charts is called
an conformal structure. The Gauss curvature is given by K(z) = − 2

σ(z)
∂2

∂z∂z̄ log σ(z),

where the complex differential operator ∂
∂z = 1

2 (
∂
∂x + i ∂

∂y ),
∂
∂z̄ = 1

2 (
∂
∂x − i ∂

∂y ).

If K(z) is −1 everywhere, then we say the Riemannian metric is hyperbolic. The
Gauss-Bonnet theorem claims that the total Gauss curvature is a topological invari-
ant

∫
S
K(p)dp = 2πχ(S), where χ(S) is the Euler-characteristic number. Given a

mapping f : (S1,g1) → (S2,g2), z and w are local isothermal parameters on S1 and
S2 respectively. g1 = σ(z)dzdz̄ and g2 = ρ(w)dwdw̄. Then the mapping has local
representation w = f(z) or denoted as w(z).

Definition 1 (Harmonic Map). The harmonic energy of the mapping is defined as
E(f) =

∫
S
ρ(z)(|wz|2 + |wz̄|2)dxdy. If f is a critical point of the harmonic energy,

then f is called a harmonic map.

The necessary condition for f to be a harmonic map is the Euler-Lagrange equation
wzz̄+

ρw

ρ wzwz̄ ≡ 0. The theory on the existence, uniqueness and regularity of harmonic
maps have been thoroughly discussed in [14]. The following theorem lays down the
theoretic foundation of our proposed method.

Theorem 1. [14] Suppose f : (S1,g1) → (S2,g2) is a degree one harmonic map,
furthermore the Riemann metric on S2 induces negative Gauss curvature, then for each
homotopy class, the harmonic map is unique and diffeomorphic.
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Ricci Flow Ricci flow deforms the Riemannian metric proportional to the curvature,
such that the curvature evolves according to a heat diffusion process and eventually
becomes constant everywhere.

Definition 2 (Ricci Flow). Hamilton’s surface Ricci flow is defined as dgij
dt = −2Kgij .

Theorem 2 (Hamilton). Let (S,g) be compact. If χ(S) < 0, then the solution to Ricci
Flow equation exists for all t > 0 and converges to a metric of constant curvature.

Given a surface with negative Euler-characteristic number, by running Ricci flow, a
hyperbolic metric of the surface can be obtained. Then for each point p ∈ S, we can
choose a neighborhood Up and isometrically embed it onto the hyperbolic plane H2,
ϕp : Up → H2. (Up, ϕp) is an isothermal coordinate chart, the collection of such charts
{(Up, ϕp)|∀p ∈ S} forms a conformal structure of the surface.

Hyperbolic Space In this work, we use the Poincaré’s disk model for the hyperbolic
plane H2, {z ∈ C| |z| < 1} with Riemannian metric ρ(z)dzdz̄ = dzdz̄

(1−zz̄)2 . The
geodesics are called hyperbolic lines. A hyperbolic line through two points p and q is
a circular arc perpendicular to the unit circle. The hyperbolic rigid motions are Möbius
transformations ϕ : z → eiθ z−z0

1−z̄0z
. A fixed point p of a Möbius transformation ϕ sat-

isfies ϕ(z) = z. All the Möbius transformations in the current work have two fixed
points z1 and z2, z1 = limn→∞ ϕn(z), z2 = limn→∞ ϕ−n(z), The axis of ϕ is the
hyperbolic line through its fixed points. Given two non-intersecting hyperbolic lines γ1
and γ2, there exists a unique hyperbolic line τ orthogonal to both of them, and gives the
shortest path connecting them. For each γk, there is a unique reflection ϕk whose axis
is γk, then the axis of ϕ2 ◦ϕ−1

1 is τ . Another hyperbolic plane model is the Klein’s disk
model, where the hyperbolic lines coincide with Euclidean lines. The conversion from
Poincare’s disk model to Klein disk model is given by z → 2z

1+zz̄ .

Fundamental Group and Fuchs Group Let S be a surface, all the homotopy classes of
loops form the fundamental group (homotopy group), denoted as π1(S). A surface S̃
with a projection map p : S̃ → S is called the universal covering space of S. The Deck
transformation ϕ : S̃ → S̃ satisfies ϕ ◦ p = p and form a group Deck(S̃). Let γ be
a loop on the hyperbolic surface, then its homotopy class [γ] corresponds to a unique
Möbius transformation ϕγ . As the Gauss curvature of S is negative, in each homotopy
class [γ], there is a unique geodesic loop given by the axis of ϕγ .

Hyperbolic Pants Decomposition As shown in Fig.2 (a) and (b), given a topological
surface S, it can be decomposed to pairs of pants. Each pair of pants is a genus zero
surface with three boundaries. If the surface is with a hyperbolic metric, then each ho-
motopy class has a unique geodesic loop. Suppose a pair of hyperbolic pants with three
boundaries {γi, γj , γk}, which are geodesics. Let {τi, τj , τk} be the shortest geodesic
paths connecting each pair of boundaries. The shortest paths divide the surface to two
identical hyperbolic hexagons with right inner angles. When the hyperbolic hexagon
with right inner angles is isometrically embedded on the Klein disk model, it is identi-
cal to a convex Euclidean hexagon.
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4 Algorithms

We first explain our registration algorithm pipeline as illustrated in Alg. 1 and Fig. 1,
then explain each step in details as following:

Algorithm 1 Brain Surface Registration Algorithm Pipeline.
1. Slice the cortical surface along the landmark curves.
2. Compute the hyperbolic metric using Ricci flow.
3. Hyperbolic pants decomposition, isometrically embed them to Klein model.
4. Compute harmonic maps using Euclidean metrics between corresponding pairs of pants,
with consistent curvature based boundary matching constraints computed by the DWT algo-
rithm.
5. Use nonlinear heat diffusion to improve the mapping to a global harmonic map on Poincare
disk model.

Fig. 1. Algorithm Pipeline (suppose we have 2 brain surface M and N as input): (a). One of the
input brain models M , with landmarks being cut open as boundaries. (b). Hyperbolic embedding
of the M on the Poincaré disk. (c). Decompose M into multiple pants by cuting the landmarks
into boundaries, and each pant is further decomposed to 2 hyperbolic hexagons. (d). Hyperbolic
hexagons on Poincaré disk become convex hexagons under the Klein model, then a one-to-one
map between the correspondent parts of M and N can be obtained. Then we can apply our
hyperbolic heat diffusion algorithm to get a global harmonic diffeomorphism.

1. Preprocessing The cortical surfaces are reconstructed from MRI images and repre-
sented as triangular meshes. The sucul landmarks are manually labeled on the edges of
the meshes. Then we slice the meshes along the landmark curves, to form topological
multiple connected annuli.

2. Discrete Hyperbolic Ricci Flow As the Euler characteristic numbers of the cortical
surfaces are negative, they admit hyperbolic metrics. We treat each triangle as hyper-
bolic triangle and set the target Gauss curvature for each interior vertex to be zeros, and
the target geodesic curvature for each boundary vertex to be zeros as well. We compute
the hyperbolic metrics of the brain meshes using discrete hyperbolic Ricci flow method.
For detailed discussion of the computational algorithm, one may refer to [26].
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3. Hyperbolic Pants Decomposition In our work, the input surface is a genus zero sur-
face with multiple boundary components ∂S = γ0+ γ1+ · · · γn, moreover, the surface
is with hyperbolic metric, and all boundaries are geodesics. The algorithm is as follows:
choose arbitrary two boundary loops γi and γj , compute their product [γi · γj ], if the
product is homotopic to [γ−1

k ], then choose other pair of boundary loops. Otherwise,
suppose [γi · γk] is not homotopic to any boundary loop, compute its corresponding
Möbius transformation, ϕγiγj , and its fixed points ϕ+∞

γiγj
(0) and ϕ−∞

γiγj
(0). The hyper-

bolic line through the fixed points is the axis of the ϕγiγj , which is the geodesic in [γiγj ].
Slice the mesh along the geodesic, and repeat the process on each connected compo-
nents, until all the connected components are pairs of pants. Figure 2 (c),(d) shows one
example for the decomposition process. Alg. 2 gives the computational steps.

Algorithm 2 Hyperbolic Pants Decomposition.
Input: Topological sphere M with B boundaries.
Output: Pants decomposition of M .
1. Put all boundaries γi of M into a queue Q.
2. If Q has < 3 boundaries, end; else goto Step 2.
3. Compute a geodesic loop γ′ homotopic to γi · γj
4. γ′, γi and γj bound a pants patch, remove this pants patch from M . Remove γi and γj from
Q. Put γ′ into Q. Go to Step 1.

4. Initial Mapping Constructing with Dynamic Time Warping This step has several
stages: first the pants are decomposed to hyperbolic hexagons and embed isometrically
to the Poincaré disk; then convert the hexagons from Poincaré disk to Klein model;
the final, also the most important step is to register the corresponding hexagons using
Dynamic Time Warping (DTW) to achieve a geometric meaningful landmark match-
ing and harmonic mapping for surface registration. The resultant piecewise harmonic
mapping is the initial mapping. Fig 2 (e) shows the algorithm process.

For the first stage, we use the method described in the theory section to find the
shortest path between two boundary loops. Assume a pair of hyperbolic pants M with
three geodesic boundaries {γi, γj , γk}. On the universal covering space M̃ , γi and γj
are lifted to hyperbolic lines, γ̃i and γ̃j respectively. There are reflections ϕ̃i and ϕ̃j ,
whose symmetry axis are γ̃i and γ̃j . Then the axis of the Möbius transformation γ̃j ·γ̃−1

i

corresponds to the shortest geodesic path τk between γi and γj . In the second stage,
each hyperbolic hexagon on the Poincaré disk is transformed to a convex hexagon in
Klein’s disk using z → 2z

1+zz̄ . The final step first register the correspondent landmarks,
which are the boundaries of hyperbolic hexagon now, using DTW algorithm, then a
planar harmonic map between two corresponding planar hexagons is established by
wzz̄ ≡ 0.

DTW algorithm [4] has being proved to be extremely efficient for detecting sim-
ilar shapes with different phases. Given two curves X = (x1;x2; ...xN ) and Y =
(y1; y2; ...yM ) represented by the sequences of vertices, DTW yields optimal match-
ing solution in the O(MN) time. Here the local cost function is defined as cij =
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|MeanCurvature(xi)−MeanCurvature(yj)|, and the global cost function is CXY =∑L
l=1 c(xnl

, yml
). with L be the alignment path length. The result will align two curves

according to their mean curvature distribution, which captures the geometry informa-
tion. One thing worth mentioning is that to ensure the mapping between 2 curves is
diffeomorphic, we locally turbulent the result if two vertices i and i + 1 were mapped
to one vertex j. For more detail about DTW algorithm we refer readers to [4].

Fig. 2.

5. Non-linear Heat Diffusion Let (S,g) be a triangle mesh with hyperbolic metric
g. Then for each vertex v ∈ S, the one ring neighboring faces form a neighborhood
Uv , the union of Uv’s cover the whole mesh, S ⊂

∪
v∈S Uv . Isometrically embed Uv

to the Poincaré’s disk ϕv : Uv → H2, then {(Uv, ϕv)} form a conformal atlas. All
the following computations are carried out on local charts of the conformal atlas. The
computational result is independent of the choice of local parameters.

The initial mapping is diffused to form the hyperbolic harmonic map. Suppose f :
(S1,g1) → (S2,g2) is the initial map, g1 and g2 are hyperbolic metrics. We compute
the conformal atlases of S1 and S2, then choose local conformal parameters z and w
for S1 and S2. The mapping f has local representation f(z) = w, or simply w(z), then
the non-linear diffusion is given by

dw(z, t)

dt
= −[wzz̄ +

ρw(w)

ρ(w)
wzwz̄], (1)

where ρ(w) = (1 − ww̄)−2. Suppose vi is chosen to be a vertex on S1, with local
representation zi, after diffusion, we get the local representation of its image w(zi).
Suppose w(zi) is inside a triangular face t(vi) of S2, t(vi) has three vertices with local
representation [wi, wj , wk], then we compute the complex cross ratio, which is given
by η(vi) := [w(zi), wi, wj , wk] =

(w(zi)−wi)(wj−wk)
(w(zi)−wk)(wj−wi)

. the image of vi is then repre-
sented by the pair [t(vi), η(vi)]. Note that, all the local coordinates transitions in the
conformal chart of S1 and S2 are Möbius transformations, and the cross ration η is
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Algorithm 3 Hyperbolic Heat Diffusion Algorithm.
Input: Two surface models M , N with their hyperbolic metric CM and CN on Poincaré disk,
the one-to-one correspondence (vi, pi) and a threshold ε. Here vi is the vertex of mesh M , pi
is the 3D coordinate on mesh N .
Output: A new diffeomorphism (vi, Pi).
1. For each vertex vi of M that is not a landmark vertex, embed it’s neighborhood onto Poincaré
disk, in which vi has coordinate zi; do the same for pi and note it’s coordinate on Poincaré
disk as wi.
2. Compute dwi(zi,t)

dt
using equation (1).

3. Update wi = wi + step dwi(zi,t)
dt

.
4. Compute new 3D coordinate Pi on N using the updated wi, and repeat the above process
until wi(zi,t)

dt
is less than ε.

invariant under Möbius transformation, therefore, the representation of the mapping
f : vi → [f(vi), η(vi)] is independent of the choice of local coordinates. Alg. 3 gives
the process by steps. Notice that we may choose to apply the heat diffusion to the land-
mark vertices in order to get a soft landmark alignment.

5 Experimental Results

We implemented our algorithms using generic C++ on Windows, all the experiments
are conducted on a laptop computer of Intel Core2 T6500 2.10GHz with 4GB memory.

Input Data We perform the experiments on 24 brain cortical surfaces reconstructed
from MRI images. Each cortical surface has about 150k vertices, 300k faces and used
in some prior research [10]. On each cortical surfaces, a set of 26 landmark curves were
manually drawn and validated by neuroanatomists. In our current work, we selected
10 landmark curves, including Central Sulcus, Superior Frontal Sulcus, Inferior Frontal
Sulcus, Horizontal Branch of Sylvian Fissure, Cingulate Sulcus, Supraorbital Sulcus,
Sup. Temporal with Upper Branch, Inferior Temporal Sulcus, Lateral Occipital Sulcus
and the boundary of Unlabeled Subcortcial Region.

Registration Visualization In Fig 3 we show the visualized registration result of 3
brain models, with one as target and 2 registered to it. We can see our algorithm shows
a reasonable good result.

Landmark Curve Variation For brain imaging research, it is important to achieve
consistent local surface matching, e.g. landmark matching. We adapted a geometric
quantitative measure of curve alignment error function to be the global cost function
in section 4.4 CXY =

∑L
l=1 c(xnl

, yml
). For two curves X = (x1;x2; ...xN ) and

Y = (y1; y2; ...yM ) represented by the sequences of vertices. Lower values indicate
better geometric alignment for the curves. The DTW algorithm minimizes this error
function while keeps the Hausdorff distance to be exactly zero. In Fig. 4 left we show
the average histogram of curvature difference of aligned vertices on all 10 landmarks,
from both the previous method [7] and our method.
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Fig. 3. First row: target brain surface from front, back and bottom view. Rest three rows: 2 brain
models registered to the target model. The colored balls on the models show the detailed corre-
spondence, as the balls with the same color are correspondent to each other.

Performance Evaluation and Comparison We compare our registration method with
conventional cortical registration method based on harmonic mapping with Euclidean
metric [22], where the template surface is conformally flattened to a planar disk, then the
registration is obtained by a harmonic map from the source cortical surface to the disk
with landmark constraints. Our experimental results show that by replacing Euclidean
metric by hyperbolic metric on the source and target cortical surfaces, the quality of the
registrations have been improved prominently.

5.1 Diffeomorphism

One of the most important advantages of our registration algorithm is that it ensure the
mapping between two surfaces to be diffeomorphic. We randomly choose one model as
template and all others as source to compute the registration. For each registration, we
compute the Jacobian determinant and measure the areas of flipped regions. The ratio
between flipped area to the total area is collected to form the histogram shown in Fig.4
right. The horizontal axis shows the flipped area ratio, the vertical axis shows the num-
ber of registrations. The conventional method (blue bars) [22] produces a big flipped
area ratio, even as much as 9%. In contrast, the flipped area ratios for all registrations
obtained by the current method are exactly 0’s.

5.2 Curvature Maps

One method to evaluate registration accuracy is to compare the alignment of curvature
maps between the registered models [11]. In this paper we calculated curvature maps
using an approximation of mean curvature, which is the convexity measure. We quan-
tified the effects of registration on curvature by computing the difference of curvature
maps from the registered models. As Figure 5 left shows, we assign each vertex the
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Fig. 4. Left: Landmark curvature difference of previous method and our method. Y axis is the
vertex number on landmark that have the X amount of curvature difference. Right: Flipped area
percentage of previous method and our method.

curvature difference between its own curvature and the curvature of its correspondent
point on the target surface, then build a color map according to the difference.

We use all 24 data sets for the experiment. First, one data set is randomly chosen
as the template, then all others are registered to it. For each registration, we compute
the curvature difference map. Then we compute the average of 23 curvature difference
maps. The average curvature difference map is color encoded on the template, as shown
in Fig.5 left. The histogram of the average curvature difference map is also computed,
as shown in Fig.5 right. It is obvious that the current registration method produces less
curvature errors than [22].

Fig. 5. Left: Curvature map difference of previous method (top row) and our method (bottom
row). Color goes from green-yellow-red while the curvature difference increasing. Right: Average
Curvature Map Difference of previous method and our method.

5.3 Local Area Distortion

Similarly, we measured the local area distortion induced by the registration. For each
point p on the template surface, we compute its Jacobian determinant J(p), and repre-
sent the local area distortion function at p as max{J(p), J−1(p)}. J can be approxi-
mated by the ratio between the areas of a face and its image. Note that, if the registra-
tion is not diffeomorphic, the local area distortion may go to ∞. Therefore, we add a
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threshold to truncate large distortions. Then we compute the average of all local area
distortion functions induced by the 23 registrations on the template surface. The aver-
age local area distortion function on the template is color encoded as shown in Fig.6
left, the histogram is also computed in Fig.6 right. It can be easily seen that current
registration method greatly reduces the local area distortions compare with [22].

Fig. 6. Left: Average Area Distortion. Color goes from green-yellow-red while area distortion
increasing. Right: Average Area Distortion of previous method and our method.

6 Conclusion and Future Work

Conventional brain mapping method suffers from the fact that with the presence of land-
mark constraints, the registrations may not be bijective. This work introduces a novel
registration algorithm, hyperbolic harmonic mapping with curvature based landmark
matching, which completely solves this problem. The new method changes the metric
on Cortical surfaces and greatly improves the registration quality. Experimental results
demonstrate the current method always produces smooth mapping, and outperforms
some existing brain registration method in terms of curvature difference and local area
distortion. In future, we will explore further the methodology of changing Riemannian
metrics to improve efficiency and efficacy of different geometric algorithms.
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