Brain Surface Conformal Parameterization with Holomorphic Flow Method and Its Application to HIV/AIDS

Yalin Wang¹,², Jie Zhang³, Tony F. Chan², Arthur W. Toga¹ and Paul M. Thompson¹

¹Lab. of Neuro Imaging and Brain Research Institute, UCLA School of Medicine
²Mathematics Department, UCLA
³Statistics Department, University of Wisconsin-Madison

Introduction
We applied multivariate tensor-based morphometry to study lateral ventricular surface abnormalities associated with HIV/AIDS. Based on holomorphic one-forms, we obtained conformal parameterization of ventricular geometry and registered lateral ventricular surfaces across 19 subjects (8 controls and 11 HIV/AIDS). Multivariate Hotelling’s T² statistic was applied on the local Riemannian metric tensors, and it powerfully detected brain surface abnormalities.

Methods

1. Canonical Conformal Parameterization
Holomorphic one-forms, a structure used in differential geometry, can be used to generate canonical conformal parameterization:
- Compute exact harmonic one-forms bases;
- Compute closed harmonic one-forms bases;
- Compute the canonical holomorphic one-form and the canonical conformal parameterization.

2. Multivariate Tensor-Based Morphometry
Suppose φ : S¹ → S² is a map from the surface S¹ to the surface S², and the derivative map of φ is the linear map between the tangent spaces:
$$dφ : TM(p) → TM(φ(p))$$
Under the orthonormal frame on S¹ and S²:
$$\{ e^{−i_1}, \frac{\partial}{\partial u_1}, e^{−i_2}, \frac{\partial}{\partial v_1}, \{ e^{−i_3}, \frac{\partial}{\partial u_2}, e^{−i_4}, \frac{\partial}{\partial v_2} \}$$
Then, the derivative map under the orthonormal frames is represented by:
$$J = dφ = e^{\phi} \begin{pmatrix} \partial \phi_u & \partial \phi_v \\ \partial \phi_u & \partial \phi_v \end{pmatrix}$$
Define the deformation tensor as: $S = (J^T J)^{1/2}$, and transform it via a logarithmic transformation to form a vector space. After analyzing various different surfaced-based statistics, the permutation test p values were calculated for each surface point, and the result is shown above. The overall significance levels were also computed, with the smallest to be 0.0028 for the left ventricle and 0.0066 for the right, resulting from multivariate TBM.

Surface parameterization and partition
• Three cuts were automatically located and introduced for topology optimization. After modeling the topology in this way, it became an open boundary surface with 3 boundaries (Fig. (a)).
• The exact harmonic one-form (Fig. (b)), its conjugate one-form (Fig. (c)) and canonical holomorphic one-form (Fig. (d)) were then computed.
• According to the conformal net (Fig. (e)), each surface can be divided into three connected pieces (Fig. (f)), with each piece topologically equivalent to a cylinder.

Surface registration
After segmentation, a new canonical holomorphic one-form is computed on each piece and each piece is conformally mapped to a rectangle. Surface registration is performed via parameter domain.

Comparison with Other Statistics

<table>
<thead>
<tr>
<th></th>
<th>Full Matrix J</th>
<th>Determinant of J</th>
<th>Largest EV of J</th>
<th>Smallest EV of J</th>
<th>Pair of EV of J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Vent</td>
<td>0.0028</td>
<td>0.0330</td>
<td>0.0098</td>
<td>0.0240</td>
<td>0.0084</td>
</tr>
<tr>
<td>Right Vent</td>
<td>0.0066</td>
<td>0.0448</td>
<td>0.0120</td>
<td>0.0306</td>
<td>0.0226</td>
</tr>
</tbody>
</table>

Grant support for this work was provided by the National Institute for Biomedical Imaging and Bioengineering, the National Center for Research Resources, National Institute on Aging, the National Library of Medicine, and the National Institute for Child Health and Development (EB01651, RR019771, HD050735, AG016570, LM05639 to P.M.T.) and by the National Institute of Health Grant U54 RR021813 (UCLA Center for Computational Biology).