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Abstract. We propose a method that computes a conformal mapping
from a multiply connected mesh to the so-called slit domain, which con-
sists of a canonical rectangle or disk in which 3D curved landmarks on
the original surfaces are mapped to concentric or parallel lines in the slit
domain. In this paper, we studied its application to brain surface param-
eterization. After cutting along some landmark curve features on surface
models of the cerebral cortex, we obtain multiple connected domains. By
computing exact harmonic one-forms, closed harmonic one-forms, and
holomorphic one-forms, we are able to build a circular slit mapping that
conformally maps the surface to an annulus with some concentric arcs
and a rectangle with some slits. The whole algorithm is based on solving
linear systems so it is very stable. In the slit domain parameterization re-
sults, the feature curves are either mapped to straight lines or concentric
arcs. This representation is convenient for anatomical visualization, and
may assist statistical comparisons of anatomy, surface-based registration
and signal processing. Preliminary experimental results parameterizing
various brain anatomical surfaces are presented.

1 Introduction

In this paper, we introduce a new method to conformally map a multiply con-
nected domain to an annulus with multiple concentric arcs (called the circular
slit map) or to a rectangle with multiple straight lines (the parallel slit map). It
is a global conformal parameterization method without segmentation. First, it
computes exact harmonic one-forms and closed harmonic one-forms. Secondly, it
computes all bases of holomorphic one-forms. Given appropriate boundary con-
ditions, it can compute a unique circular slit map up to a rotation around the
center. The slit mapping computes the intrinsic structure of the given surface,
which can be reflected in the shape of the target domain.

Most of brain conformal parameterization methods [1,2,3,4,5,6] can handle
the complete brain cortex surface, but can not deal with cortex surfaces with
boundaries. The holomorphic flow segmentation method [7] can match cortex
surfaces with boundaries or landmarks, but the resulting mappings have singu-
larities, which are very error-prone in practice. Only the Ricci flow method [8]
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and slit map method can handle surfaces with complicated topologies (bound-
aries and landmarks) without singularities. The Ricci flow method is a nonlin-
ear optimization process, which is much more time consuming than slit map
method. The Ricci flow method also has higher requirements for the quality for
the tessellations of the surfaces. Because the Ricci flow method involves a lot of
transcendental computations, it is not as stable as slit map method. Slit map
method is a linear method, which is more efficient and robust.

1.1 Related Work

Brain surface parameterization has been studied intensively. Schwartz et al. [9],
and Timsari and Leahy [10] computed quasi-isometric flat maps of the cerebral
cortex. Drury et al. [11] presented a multiresolution method for flattening the
cerebral cortex. Hurdal and Stephenson [1] reported a discrete mapping approach
that uses circle packings to produce “flattened” images of cortical surfaces on
the sphere, the Euclidean plane, and the hyperbolic plane. The maps obtained
are quasi-conformal approximations of classical conformal maps. Haker et al. [2]
implemented a finite element approximation for parameterizing brain surfaces
via conformal mappings. They select a point on the cortex to map to the north
pole of the Riemann sphere and conformally map the rest of the cortical surface
to the complex plane by stereographic projection of the Riemann sphere to the
complex plane. Gu et al. [3] proposed a method to find a unique conformal map-
ping between any two genus zero manifolds by minimizing the harmonic energy
of the map. They demonstrate this method by conformally mapping a cortical
surface to a sphere. Ju et al. [4] presented a least squares conformal mapping
method for cortical surface flattening. Joshi et al. [5] proposed a scheme to pa-
rameterize the surface of the cerebral cortex by minimizing an energy functional
in the pth norm. Ju et al. [6] reported the results of a quantitative comparison
of FreeSurfer [12], CirclePack, and least squares conformal mapping (LSCM)
with respect to geometric distortion and computational speed. Wang et al. [7]
have used holomorphic 1-forms to parameterize anatomical surfaces with com-
plex (possibly branching) topology. Wang et al. [8] introduced a brain surface
conformal mapping algorithm based on algebraic functions. By solving the Yam-
abe equation with the Ricci flow method, it can conformally map a brain surface
to a multi-hole disk.

2 Theoretical Background

Suppose S is a surface embedded in R
3, with induced Euclidean metric g. S is

covered by an atlas {(Uα, φα)}. Suppose (xα, yα) is the local parameter on the
chart (Uα, φα). We say (xα, yα) is isothermal, if the metric has the representation
g = e2λ(xα,yα)(dx2

α + dy2
α).

The Laplace-Beltrami operator is defined as

Δg =
1

e2λ(xα,yα) (
∂2

∂x2
α

+
∂2

∂y2
α

).

A function f : S → R is harmonic, if Δgf ≡ 0.
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Suppose ω is a differential one-form with the representation fαdxα + gαdyα

in the local parameters (xα, yα), and fβdxβ + gβdyβ in the local parameters
(xβ , yβ). Then (

∂xα

∂xβ

∂yα

∂xβ

∂xα

∂yβ

∂yα

∂yβ

) (
fα

gα

)
=

(
fβ

gβ

)
.

ω is a closed one-form, if on each chart (xα, yα), ∂f
∂yα

− ∂g
∂xα

= 0. ω is an exact
one-form, if it equals the gradient of some function. An exact one-form is also
a closed one-form. If a closed one-form ω satisfies ∂f

∂xα
+ ∂g

∂yα
= 0, then ω is a

harmonic one-form. The gradient of a harmonic function is an exact harmonic
one-form.

The so-called Hodge star operator turns a one-form ω to its conjugate ∗ω,
∗ω = −gαdxα + fαdyα.

A holomorphic one-form is a complex differential form ω +
√

−1∗ω, where ω
is a harmonic one-form.

Suppose S is an open surface with n boundaries γ1, · · · , γn. We can uniquely
find a holomorphic one-form ω, such that

∫
γk

ω =

⎧⎨
⎩

2π k = 1
−2π k = 2
0 otherwise

(1)

Definition 1 (Circular Slit Mapping). Fix a point p0 on the surface, for
any point p ∈ S, let γ be an arbitrary path connection p0 and p, then the circular
slit mapping is defined as φ(p) = e

∫
γ

ω.

Theorem 1. The function φ effects a one-to-one conformal mapping of M onto
the annulus 1 < |z| < eλ0 minus n − 2 concentric arcs situated on the circles
|z| = eλi , i = 1, 2, · · · , n − 2.

The proof of the above theorem on slit mapping can be found in [13]. For a
given choice of the inner and outer circle, the circular slit mapping is uniquely
determined up to a rotation around the center. The parallel slit mapping can be
defined in a similar way.

Definition 2 (Parallel Slit Mapping). Let S̄ be the universal covering space
of the surface S, π : S̄ → S be the projection and ω̄ = π∗ω be the pull back of ω.
Fix a point p̄0 on S̄, for any point p ∈ S̄, let γ̄ be an arbitrary path connection
p̄0 and p̄, then the parallel slit mapping is defined as φ̄(p̄) =

∫
γ̄ ω̄.

3 Algorithm Pipeline

Suppose the input mesh has n+1 boundaries, ∂M = γ0 −γ1 −· · ·−γn. Without
loss of generality, we map γ0 to the outer circle of the circular slit domain, γ1 to
the inner circle, and all the others to the concentric slits.

The algorithm pipeline is as follows :
1 Compute the basis for all exact harmonic one-forms;
2. Compute the basis for all closed harmonic one-forms;
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3. Compute the basis for all holomorphic one-forms;
4. Construct the slit mapping.

3.1 Basis for Exact Harmonic One-Forms

The first step of the algorithm is to compute the basis for exact harmonic one-
forms. Let γk be an inner boundary, we compute a harmonic function fk : S → R

by solving the following Dirichlet problem on the mesh M :
{

Δfk ≡ 0
fk|γj = δkj

, where

δkj is the Kronecker function, Δ is the discrete Laplace-Beltrami operator using
the co-tangent formula proposed in [14].

The exact harmonic one-form ηk can be computed as the gradient of the
harmonic function fk, ηk = dfk, and {η1, η2, · · · , ηn} form the basis for the exact
harmonic one-forms .

3.2 Basis for Harmonic One-Forms

After getting the exact harmonic one-forms, we will compute the closed one-
form basis. Let γk (k > 0) be an inner boundary. Compute a path from γk to
γ0, denote it as ζk. ζk cut the mesh open to Mk, while ζk itself is split into two
boundary segments ζ+

k and ζ−k in Mk. Define a function gk : Mk → R by solving
a Dirichlet problem, ⎧⎨

⎩
Δgk ≡ 0
gk|ζ+

k
= 1

gk|ζ−
k

= 0.

Compute the gradient of gk and let τk = dgk, then map τk back to M , where
τk becomes a closed one-form. Then we need to find a function hk : M → R, by
solving the following linear system: Δ(τk + dhk) ≡ 0.

Updating τk to τk +dhk, we now have {τ1, τ2, . . . , τn} as a basis set for all the
closed but non-exact harmonic one-forms.

With both the exact harmonic one-form basis and the closed non-exact har-
monic one-form basis computed, we can construct the harmonic one-form basis
by taking the union of them: {η1, η2, · · · , ηn, τ1, τ2, · · · , τn}.

3.3 Basis for Holomorphic One-Forms

In Step 1 we computed the basis for exact harmonic one-forms {η1, · · · , ηn}. Now
we compute their conjugate one-forms {∗η1, · · · , ∗ηn}, so that we can combine
all of them together into a holomorphic one-form basis set.

First of all, for ηk we compute an initial approximation η′
k by a brute-force

method using the Hodge star. That is, rotating ηk by 90◦ about the surface
normal to obtain η′

k. In practice such an initial approximation is usually not
accurate enough. In order to improve the accuracy, we employ a technique uti-
lizing the harmonic one-form basis we just computed. From the fact the ηk

is harmonic, we can conclude that its conjugate ∗ηk should also be harmonic.
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Therefore, ∗ηk can be represented as a linear combination of the base harmonic
one-forms: ∗ηk =

∑n
i=1 aiηi +

∑n
i=1 biτi.

Using the wedge product ∧, we can construct the following linear system,∫
M

∗ηk ∧ ηi =
∫

M

η′
k ∧ ηi,

∫
M

∗ηk ∧ τj =
∫

M

η′
k ∧ τj .

We solve this linear system to obtain the coefficients ai and bi (i = 1, 2, · · · , n)
for the conjugate one-form ∗ηk. Pairing each base exact harmonic one-form in
the basis with its conjugate, we get a basis set for the holomorphic one-form
group on M : {η1 +

√
−1∗η1, · · · , ηn +

√
−1∗ηn}

3.4 Construct Slit Mapping

After computing the holomorphic one-form basis, we need to find a special holo-
morphic one-form ω =

∑n
i=1 λi(ηi +

√
−1∗ηi), such that the imaginary part of

its integral satisfies

Im

(∫
γk

ω

)
=

{
−2π k = 1
0 k > 1

To get the coefficients λi, we solve the following linear system for λi, i =
1, · · · , n: ⎛

⎜⎜⎜⎝
α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1
λ2
...

λn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−2π
0
...
0

⎞
⎟⎟⎟⎠

where αkj =
∫

γj

∗ηk.
It can be proven that this linear system has a unique solution, which reflects

the fact that γ1 is mapped to the inner circle of the circular slit domain. Further,
the system implies the following equation λ1α01 + λ2α02 + · · · + λnα0n = 2π,
which means that γ0 is mapped to the outer circle in the circular slit domain.

After computing the desired holomorphic one-form ω, we are ready to generate
the circular slit mapping. What we need to compute is a complex-valued function
φ : M → C by integrating ω and taking the exponential map. Choosing a base
vertex v0 arbitrarily, and for each vertex v ∈ M choosing the shortest path γ

from v0 to v, we can compute the map as the following: φ(v) = e
∫

γ
ω.

Based on the circular slit map φ we just computed, we can compute a parallel
slit map τ : M → C: τ(v) = lnφ(v).

4 Experimental Results

We applied our algorithms to parameterize various anatomical surfaces extracted
from 3D MRI scans of the brain. In this paper, the segmentations are regarded
as given, and result from automated and manual segmentations detailed in our
prior work. Figure 1 shows an example of our computation results. For the
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Fig. 1. (a) and (b) show the cortical surface with 12 landmarks cut open, including an
open boundary at the corpus callosum (in green); (c) is the parallel slit map result; (f)
is the circular slit map result; (d) and (e) show the conformal texture parameterized
by the circular slit map (f)

cortical surface of the brain, we cut it open along twelve major landmarks. (a)
and (b) show the brain surface from two different views. With our slit mapping
algorithm, we can conformally map it to a rectangular domain with four slits
(c) and an annulus with ten concentric arcs (d). (d) and (e) demonstrate the
conformal texture mapping as the pull-back of the coordinates induced by the
circular slit mapping of (f).

We also tested our algorithm on a left hippocampal surface, a key structure
in the medial temporal lobe of the brain, for which parametric shape models are
commonly developed for tracking shape differences and longitudinal atrophy in
disease. The results are shown in the first row of Subfigure 1 in Figure 2. We
leave two holes on the front and back of the hippocampal surface, represent-
ing its anterior junction with the amygdala and its posterior limit as it turns
into the white matter of the fornix. We also randomly selected two curves ly-
ing in regions of high curvature, which are of interest for surface registration
research (these could also be boundaries of the CA fields, or other architectonic
boundaries, if high-field images are available). The parallel slit mapping result
is shown with appropriate landmark curves labeled. We also applied our algo-
rithm to lateral ventricular surface (second row in Subfigure 1 of Figure 2). We
introduced three cuts. The motivation for these cuts are based on the topol-
ogy of the lateral ventricles, in which several horns are joined together at the
“atrium” or “trigone”. In the parallel slit mapping result, two boundaries are
mapped to left and right boundaries, respectively. The rectangle’s lengthy aspect
ratio reflects its intrinsically long horn-like shape. The third column shows the
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Fig. 2. Subfigure 1 illustrations the parallel slit mapping results for a hippocampal
surface and a left lateral ventricle. Surfaces are cut open along various landmarks
which are the blue curves on two pictures in the left column. Similar to previous other
work, the landmarks are curves are either at the end of shape or follow significant
curvatures. In the first row, four landmarks are cut open on a hippocampal surface.
In the parallel slit map result, landmarks b and d are mapped to the upper and lower
boundaries, respectively. On the second row, three landmarks are introduced on a
lateral ventricle surface. In the parallel slit map, e and f are mapped to the left and
right boundaries, respectively. Their conformal texture are also shown. In Subfigure
2,conformal parameterization results are shown with different boundary conditions.
The first column shows a cerebral cortical surface is cut open along four major sulcal
landmarks. The second column shows the circular slit map and parallel slit map results
when a pair of landmarks are selected as boundaries landmark a as the exterior circular
boundary and d as the inner circular boundary. The third column shows results the
other pair of landmarks are selected as boundaries.
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conformal texture mapping as pull-back of the coordinates induced by the slit
mapping.

In Figure 2, Subfigure 2 demonstrates various parallel slit mapping results
given different boundary conditions. As shown in Subfigure 2, four landmarks
were cut open. After the cut, the surface turns into an open boundary genus
three surface. For the Equation 1, we selected two different pairs of landmarks
as the exterior and inner boundaries by putting the integration of different γk

as 2π and −2π. The second column shows the parameterization results when we
use landmark a and d as the exterior and inner circular boundaries, respectively.
The third column shows the parameterization results when we select the other
pair of landmark curves as the boundary conditions.

5 Conclusions and Future Work

In this paper, we presented a brain surface conformal parameterization method
based on the slit mapping, which transfers cortical geometry and any embed-
ded landmarks into a canonical domain, with conformal coordinates. With fixed
boundary conditions, our algorithm can compute unique circular slit maps and
parallel slit maps, where the positions and lengths of the slits are determined
by the conformal equivalence class of the surface. We tested our algorithm on
hippocampal, lateral ventricular and cerebral cortical surfaces. Our future work
will include empirical application of the slit mapping algorithm to biomedical
applications in computational anatomy, including the detection of population
differences and the tracking of brain change over time.
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