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Introduction Processing Pipeline

1. The image Is preprocessed and normalized to a common space. It IS

Al z hel D D (D neur nerativ . S
e | iseased (AD), a neurodegenerative further max-pooled to reduce feature dimensionality.

disease Is a progressive disease that affects the B
brain gradually with time and worsens. Reliable . The features are further reduced to enhance classifier performance

and early diagnosis of AD and its prodromal using probabilistic principal component analysis.

stages (I.e. Mild Cognitive Impairment(MCI)) Is . These are then passed through the simplest of all neural networks, a
essential. Deep learning has recently been multi-layer perceptron for binary classification experiments

applied to the analysis of structural and functional . 10 fold cross validation is used to validate classifier performance.
brain iImaging data [1]. Here we introduce a deep
learning based classification using neural
networks with dimensionality reduction
technigues to classify the different stages of AD
based on FDG-PET image analysis.

. An algorithm Is also devised to enhance the performance of an n-
layered multi-layered perceptron.

Experiments

Discussion

As per the Universal Approximation
theorem, we should be able to find a 1-
hidden layer MLP that perfectly fits over
the given data. Regional analysis can
be done using Grid Long Short Term
Memory (LSTM) and Parallel LSTM to
enhance accuracies. Instead of PPCA,
deep learning architectures could be
used to Ilearn high level feature
abstractions. Other disease could be
classified using the  architecture
proposed.

668 patients were studied from the ADNI ( Al z h e Disaase Nearoimaging Initiative) [2] and we studied the patients
at baseline and screening. The extent of linear separability of the data Is tested using Linear SVM as a classifier. Using
Methods " . L . L | .
Rectifled Linear Units in the neural network induces sparsity In feature representation for network layers, enhancing
linear separabllity. Increasing the number of hidden layers in the MLP displays an increase Iin accuracy. Max-pooled
features values outperform mean-pooled feature values. Patch size of 10x10x10 was selected after varying the patch
sizes from 5 to 15 to select the best size for AD/CU. The addition of demographic features such as Age, Gender, APOE

{ Y -
Probabilistic e Multilayer
PCA sl Perceptron

(gene Information) and FAQ (Functional Assessment Questionnaire) scores significantly improved performance.

Data
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Figure 2. Comparison of the classification performance with addition of
demographic features

Training set (332xnp;)

(b) Max-pooled Vector
(1x4050)
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