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ABSTRACT 

 

Nuclear shape and its heterogeneity are diagnostically 

important criteria used by pathologists in cancer diagnosis. 

Pathology assessment is currently qualitative and is based on 

2D brightfield microscopy images. We propose an imaging 

informatics framework to quantify nuclear pleomorphism by 

statistical characterization of 3D nuclear shape. We applied 

optical projection tomographic microscopy (OPTM) to 

image individual hematoxylin and eosin-stained cells with 

isotropic, sub-micron spatial resolution. We used adaptive 

thresholding schemes to segment cells and nuclei, and 

applied spherical conformal mapping methods on the 3D 

nuclear masks to compute 256 rotation invariant coefficients 

as shape descriptors for each nucleus. As a first application, 

we tested our methods on normal and cancerous epithelial 

cell lines derived from human esophagus and breast, 

analyzing 10 cell images per class. We applied ANOVA 

techniques to assess variations in nuclear shape within each 

cell type and among the four cell types. The automated 

segmentation was 96% accurate compared to manual tracing 

of the volumes of interest. Statistical analysis of shape 

coefficients revealed that cancer cell nuclei from both organs 

exhibited considerably larger variance in their coefficients 

relative to the corresponding normal cell nuclei. Our results 

demonstrate the promise of our methodology for the 

development of quantitative pathological assessments.    
 

Index Terms— 3D cell imaging, computed 

tomography, shape analysis, conformal mapping, cancer, 

heterogeneity 

 

1. INTRODUCTION 

 

Nuclear structure and spatial genome organization are 

known to be altered in cancer [1, 2]. Nuclear pleomorphism 

is a characteristic trait exhibited by cancer cells and is a 

diagnostic parameter used by pathologists to assess 

malignancy. Conventional cancer diagnosis by pathologists 

involves visual assessment of nuclear structure and tissue 

architecture by 2D brightfield microscopy imaging of tissue 

sections stained with the absorption dyes hematoxylin and 

eosin. Pathologists qualitatively grade parameters such as 

nuclear shape, chromatin packing, number of mitoses, and 

cellular arrangement in the tissue. However, the efficacy and 

interoperator consistency of these morphological 

assessments is limited by their qualitative nature and the use 

of 2D microscopy to characterize 3D entities such as cells 

and tissue sections. Factors such as choice of focal plane, 

sample orientation and overlapping cells can obfuscate 

cellular detail and bias the diagnoses derived from 2D 

micrographs. Three-dimensional microscopy modalities, 

including confocal microscopy, that generate volumetric 

images by serially stacking 2D slices provide more 

information content than 2D widefield imaging, but are 

limited by the inherent anisotropy in spatial resolution 

between the lateral and the axial directions and have not 

penetrated clinical pathology practice patterns. Although 

extensive research has been undertaken in the field of 

computerized nuclear morphometry, few methods are 

available to quantitatively characterize nuclear shape 

variations. Nuclear roundness [3] or compactness [4] are the 

metrics most commonly applied to nuclear shape 

aberrations, but they are unitary values that only suggest 

global trends and cannot capture topological variations.            

To overcome these limitations to precise and repeatable 

cell shape characterization, we developed a conjunctive 

framework utilizing optical projection tomographic cell 

imaging [5] followed by conformal mapping methods [6] to 

quantify nuclear shape. OPTM enables 3D imaging of 

individual cells with an isotropic spatial resolution of 350 

nm. Spherical conformal parameterization provides a 

rotation invariant statistical representation of surfaces and 

thus allows unbiased comparative studies of arbitrary 

surfaces. The efficacies of cell computed tomography [7] 

and conformal mapping methods [6, 8, 9] have been have 

been demonstrated separately in other studies. Here, we 

present the utility of a unified approach to assess nuclear 

pleomorphism. We algorithmically segmented the cell nuclei 

from OPTM images and applied spherical conformal 

parameterization to statistically characterize their 3D shape. 



We computed 256 rotation invariant coefficients for every 

cell nucleus. We used our methods to assess the nuclear 

shape of normal and cancer cells in cell line models of the 

human esophagus and breast.  

The remainder of this paper is organized as follows: In 

section 2, we describe our methods for image acquisition, 

3D image processing, and spherical conformal mapping. We 

present our results in section 3 and offer conclusions and 

suggestions for future work in section 4.    

 

2. METHODS 
 

2.1. Cell imaging by OPTM 
 

To prepare adherent epithelial cells (see section 3.1 for cell 

types) for tomographic imaging, we trypsinized cultured 

cells, resuspended them in appropriate media, immediately 

fixed the suspended cells with CytoLyt (Cytyc, 

Marlborough, MA), smeared them onto clean glass slides 

(VWR, West Chester, PA) coated with 0.01% Poly-L-Lysine 

(PLL; Sigma-Aldrich, St.Louis, MO) and stained them with 

6.25% w/w hematoxylin and 1% w/w eosin dyes. We 

embedded the cells in an optical gel (Nye, Fairhaven, MA) 

and imaged them individually by OPTM using the Cell-CT 

instrument (VisionGate, Phoenix, AZ) to obtain 3D cell 

images with isotropic spatial resolution. The image 

acquisition procedure is detailed in [10]. Briefly, each 

volumetric cell image was generated by parallel filtered 

backprojection image reconstruction of 500 equi-angular 

optical absorption projections of the stained cell acquired 

over a 360-degree rotation. The 147-nm voxel matrix 

dimensions of a cell image were dependent on the cell size.           
 

2.2. Segmentation 
 

Image segmentation is a subject of extensive research, with 

many techniques available for 2D and 3D images. Our goal 

for the segmentation was to generate accurate binary nuclear 

masks for shape analysis. The contrast imparted to cell 

structures by the stains (hematoxylin for the nucleus and 

eosin for the cytoplasm) produced 3D images with high 

signal-to-noise ratio. Thus, optical density histogram-based 

segmentation methods sufficed to obtain accurate volumes 

of interest (VOIs). However, since every cell has a unique 

staining pattern, we used adaptive thresholding techniques to 

automatically delineate the cell and nuclear boundaries. We 

applied a unimodal thresholding scheme [11] to compute the 

cell boundary and 3-level Otsu thresholding [12] to compute 

the nuclear boundary. We computed the 3-level Otsu 

threshold on the segmented cell volume and chose the 

highest threshold intensity to delineate the nucleus. Finally, 

we applied a connected component labeling algorithm with 

26-neighbor connectivity constraint to generate the 3D 

masks for our VOIs. Nuclear volumes ranged from 300, 000 

to 500, 000 voxels depending on cell type. To validate the 

algorithmically computed cell and nuclear masks, we 

manually traced the cell and nuclear boundaries using 

Volview software (Kitware, Clifton Park, NY).        
 

2.3. 3D nuclear shape characterization 
 

We applied conformal geometry and spherical harmonics 

(SPH) analysis on the nuclear masks to statistically 

characterize nuclear shape. Conformal mapping is one-to-

one, onto, and angle-preserving. Therefore, this method is 

appropriate for shape analysis on arbitrary surfaces. As 

detailed in [13], our shape characterization procedure is 

composed of three steps: (1) spherical conformal 

parameterization as detailed in [6], (2) computation of SPH 

coefficients with the help of a spherical fast Fourier 

transformation (FFT), and (3) computation of shape 

invariants from SPH coefficients.  

We modeled the nuclear surface as a genus zero surface 

since harmonic maps are equivalent to conformal maps for 

closed genus zero surfaces. With a variational framework, 

we minimized the harmonic energy by solving the partial 

differential equation 0s
, where S represents the 

spherical domain. We took a Gauss map as the initial map 

then used a steepest descent method to minimize the 

harmonic energy. At each step, we took the absolute 

derivative directions to constrain each surface point moving 

along the sphere’s tangent directions [6]. In contrast to other 

methods, our method directly operates on spherical surface 

and thus the results are numerically more accurate.  

Figure 1 illustrates spherical conformality for a cell 

nucleus. The shading effects roughly illustrate the conformal 

mapping from the original surface to the sphere. 

To compare nuclear shapes, we applied spherical 

harmonic analysis to generate a shape invariant 

representation of cell nuclei. This technique maps the 

nuclear surface topology onto a unit sphere using specialized 

spherical harmonic basis functions CSf 2:  that take the 

form:
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Fig.1. Spherical conformal parameterization for a nuclear 

surface. The nuclear surface (left) is conformally mapped to a 

sphere (right). Conformality is illustrated by texture mapping a 

checkerboard pattern from a sphere to the nuclear surface. The 

angle preserving property of conformal mapping maintains 

right angles on the checkerboard. 



for degree m and order l, and )(xPm
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Legendre polynomial. A projection of a function 
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lYfmlf  . Upon spherical conformal 

mapping, the original nuclear surface that is represented in 

Cartesian coordinates (x, y, and z) is now represented by a 

set of three functions RSfff zyx 2:,,  defined on the 

sphere. To parameterize the nuclear surface, each of the 

three functions was represented by a set of SPH coefficients 

obtained by expanding a spherical FFT of the function. 

These SPH coefficients were used to compute the set of 256 

shape invariants according to the formula: 
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We used these 256 shape descriptors on used for our 

statistical shape analysis. 
 

2.4. Statistical analysis 
 

There are several ways to analyze the rotation invariant 

nuclear shape coefficients. As a first step toward 

understanding shape heterogeneity and its correlation with 

cell state (normal or cancerous), we performed two analyses. 

To assess intra-cell type shape heterogeneity, we computed 

the variance between shape coefficients among cells of the 

same type and determined the number of coefficients that 

had minimal variance (<1×10
-11

). To compare nuclear 

shapes between normal and cancerous cell types of each 

organ, we performed an ANOVA and tested for significance 

at p<0.05. 

 

3. EXPERIMENTS AND RESULTS 
 

3.1. OPTM reveals 3D nuclear shape heterogeneity   
 

EPC2 (normal esophagus), Flo1 (invasive esophageal 

adenocarcinoma), HME1 (normal breast) and MDA-MB-

231 (metastatic breast cancer) epithelial cells were cultured 

according to supplier protocols in T25 tissue culture flasks 

(BD Falcon, San Jose, CA). Cells were grown to ~80% 

confluence, then trypsinized and resuspended in 2 mL of 

medium. The cells were stained and imaged as described in 

section 2.1. Ten interphase cells of each cell type were 

analyzed. 

        Representative volumetric cell images from the four 

cell types (see Fig. 2) illustrate typical variations in nuclear 

size and shape between the normal and cancer cells of both 

organs. Cancer cell nuclei were larger than their normal 

counterparts. Breast cell nuclei exhibited distinctly different 

shapes than the esophageal cell nuclei. 
 

3.2. 3D segmentation 

 

Figure 3 shows a representative result of our segmentation 

techniques. We computed four metrics – DICE coefficient, 

Jaccard similarity index (JSI), Sensitivity (sens) and 

Specificity (spec) [14] to evaluate the efficacy of our 

segmentation methods. The results for the 40 cell images are 

summarized in Table I.  

 

Table I: Evaluation of 3D segmentation methods 
 

Cell type VOI Metrics (Average %) 

  DICE JSI sens spec 

EPC2 
Cell 98.4 97 99.2 99.3 

Nucleus 96.6 93.6 96.7 99.8 

Flo1 
Cell 93.9 88.6 98.3 96.2 

Nucleus 90.9 83.9 85.4 99.9 

HME1 
Cell 98.7 97.5 99 99.5 

Nucleus 98 96.1 99.2 99.8 

MDA-MB-

231 

Cell 97 94.7 99.7 98.1 

Nucleus 93.6 88.5 99.5 99.3 
 

Table I indicates that our segmentation techniques 

performed reasonably well. Cancer cells (Flo1 and MB-231) 

were more challenging to segment accurately than their 

normal counterparts. This may be attributed to the 

underlying biology that results in less uniform staining of the 

cell membrane and nucleus in cancer cells. 
 

3.3. 3D nuclear shape analysis by conformal mapping 
 

Representative results of spherical conformal 

parameterization are shown in Fig. 4. The shape 

heterogeneity assessment enumerated in Table II indicates 

that in both esophagus and breast the normal cells exhibited 

considerably greater similarity in their nuclear shape than 

the cancer cells. Flo1 cell nuclei exhibited the largest shape 

heterogeneity. The ANOVA tests determined the means of 

251 nuclear shape coefficients to be significantly different 

 
 

Fig. 3. 2D contour from 3D segmentation result (B) overlaid on 

a slice (A) of the 3D cell volume. Cell boundary is cyan and 

nuclear boundary is red. 

 
 

Fig. 2. Representative 3D pseudocolor renderings of nuclei 

imaged using optical projection tomography. (A), (B), (C), 

and (D) are nuclei of EPC2, Flo1, HME1, and MDA-MB-231 

cells respectively. Differences in size and shape are apparent. 

Scalebar = 5 microns. 



between the EPC2 and Flo1 cell types and 77 coefficients to 

be significantly different between the HME1 and MDA-MB-

231 cells. This suggests that nuclear shape alterations may 

be more pronounced in esophageal than in breast cancer. 

Table II: Shape heterogeneity analysis 
 

Cell type Proportion of similar shape coefficients(%) 

  EPC2 62.5 

Flo1 31.6 

HME1 60.9 

MDA-

MB-231 

48.0 

 

4. CONCLUSIONS AND FUTURE WORK 
 

We presented imaging technology and informatics methods 

to quantitatively assess 3D nuclear shape, demonstrating 

their efficacy in quantifying nuclear shape heterogeneity 

within a cell type, and suggesting their promise for capturing 

pleomorphic variations between normal and cancer cells. 

Tomographic cell imagery with isotropic spatial resolution 

enabled accurate representation of 3D nuclear shape. The 

segmentation methods automatically and accurately defined 

nuclear VOIs within the cell images. Application of 

conformal geometry and spherical harmonics analysis 

methods to describe nuclear surface geometry by a series of 

spherical harmonic coefficients enabled representation and 

quantitative comparison of nuclear shapes by rotation 

invariant shape descriptors.  

Results of this pilot study validate current knowledge 

concerning the considerable nuclear pleomorphism in cancer 

cells and the changes in nuclear morphology as cells 

transform from normal to malignant state. The extent of 

shape heterogeneity we found in normal cells (EPC2 and 

HME1) is noteworthy. This study highlights the promise of 

these quantitative methods for application to clinical 

pathology and cellular heterogeneity investigations. The 

proposed framework facilitates numerous extensions for 

analysis. Our short term future goal is to apply this 

framework on a larger image dataset to perform automated 

nuclear shape-based classification of cells. 
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Fig. 4. Conformal parameterizations corresponding to nuclei 

in Fig. 2. The conformal map is visualized by texture mapping 

a checkerboard pattern onto the nuclear mask surface. The 

right angles show the angle preserving property of our 

mapping. 


