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Abstract—In this work, we intr oduce two set of algorithms
inspired by the ideas from modem geometry One is computa-
tional conformal geometry method, including harmonic maps,
holomorphic 1-forms and Ricci ow. The other one is optimiza-
tion method using af ne normals.

In the rst part, we focuson conformal geometry Conformal
structur e is a natural structur e of metric surfaces.The concepts
and methods from conformal geometry play important roles
for real applications in scienti ¢ computing, computer graphics,
computer vision and medical imaging elds.

This work systematically intr oduces the concepts, methods
for numerically computing conformal structures inspired by
conformal geometry The algorithms are theoretically rigorous
and practically ef cient.

We demonstrate the algorithms by real applications, such as
surface matching, global conformal parameterization, conformal
brain mapping etc.

In the secondpart, we consider minimization of a real-valued
function f over R™ 1 and study the choiceof the af ne normal of
the level set hypersurfacesof f asa direction for minimization.
The af ne normal vector arisesin af ne differential geometry
when answeringthe question of what hypersurfacesare invariant
under unimodular af ne transformations. It can be computed at
points of a hypersurface from local geometry or, in an alternate
description, centers of gravity of slices.In the casewhere f is
guadratic, the line passingthr ough any chosenpoint parallel to its
af ne normal will passthrough the critical point of f. We study
numerical techniquesfor calculating af ne normal dir ections of
level set surfacesof corvex f for minimization algorithms.

Index Terms— Conformal geometry, holomorphic 1-form, har-
monic maps, Ricci o w, global conformal parametrization, Con-
formal brain mapping,

I. INTRODUCTION

Conformal structureis a natural geometricstructureof a
metric surface. It is more exible than Riemannianmetric
structureandmorerigid thantopologicalstructure thereforeit
hasadwantagedor mary importantengineeringapplications.

The rst exampleis from computergraphics.Surface pa-
rameterizatiorrefersto the processto mapa surfaceonto the
planardomains,which plays a fundamentalrole in graphics
and visualizationfor the purposeof texture mapping.Surface
parameterizationcan be reformulatedas nding a special
Riemanniammetric with zero Gaussiarcurvatureeverywhere,
namelya at metric. If the parameterizations known, then
pull back metric induced by the map is the at metric;
corversely if a at metric of the surfaceis known, then the
surfacecanbe attened onto the planeisometricly to induce
the parameterization.

The secondexampleis from geometriomodeling.Construct-
ing manifold splineson a surfaceis an importantissue for
modeling.In orderto de ne parametersand the knots of the
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spline,specialatlasof the surfaceis requiredsuchthatall local
coordinatetransition mapsare afne. One way to construct
suchan atlasis asfollows, rst a at metric of the surfaceis
found, thena collection of opensetsare locatedto cover the
whole surface, nally eachopensetis attened usingthe at
metric to form the atlas.

The third example is from medical imaging. The human
brain cortex surfaceis highly corvolved. In orderto compare
and register brain cortex surfaces,it is highly desirableto
canonicallymap them to the unit sphere.This is equialent
to nd a Riemannianmetric on the cortex surface, such
that the Gaussiancurvatureinducedby this metric equalsto
one everywhere.Once such a metric is obtained,the cortex
surfacecanbe coherentlygluedontothe spherepieceby piece
isometricly

For mostapplicationsthe desiredmetricsshouldminimize
the angledistortion and the areadistortion. The anglesmea-
suredby the new metric shouldbe consistentvith thosemea-
suredby the original metric. The existenceof suchmetricscan
be summariedas Riemannuniformization theorem.Finding
thosemetricsis equivalentto computesurfaceconformalstruc-
ture. Therefore,it is of fundamentalimportanceto compute
conformalstructuresof generalsurfaces.

In moderngeometry conformal geometryof surfacesare
studiedin Riemannsurfacetheory Riemannsurfacetheoryis
arich andmature eld, it is the intersectionof mary subjects,
such as algebraic geometry algebraictopology differential
geometry complex geometryetc. This work focuseson con-
vertingtheoreticresultsin Riemannsurfacetheoryto practical
algorithms.

Il. PREVIOUS WORKS

Much researcthasheendoneon meshparameterizatiodue
to its usefulnessn computergraphicsapplicationsThe surwey
of [Floaterand Hormann2009 providesexcellentreviews on
variouskinds of meshparameterizatiotechniquesHere, we
briey discussthe previous work on the conformal mesh
parameterization.

Several researcheson conformal mesh parameterization
tried to discretizethe natureof the conformality suchthat ary
intersectiorangleatary pointon agivenmanifoldis presered
on the parameterize@ne at the correspondingpoint. Floater
[Floater 1997 introduceda meshparameterizatiotechnique
basedon corvex combinations.For each vertex, its 1-ring
stencil is parameterizednto a local parameterizatiorspace
while preservingangles,andthenthe corvex combinationof
the vertex is computedin the local parameterizatiorspaces.
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The overall parameterizatiornis obtainedby solving a sparse
linear system.[Shefer and de Sturler200]] presentech con-
strainedminimizationapproachso calledangle-basedatten-
ing (ABF), suchthatthe variationbetweerthe setof anglesof
an original meshand one of 2D atten versionis minimized.
In orderto obtaina valid and ipping-free parameterization,
several angular and geometric constraintsare incorporated
with the minimization processesLately, they improved the
performancef ABF by usinganadwancedchumericalapproach
and a hierarchicaltechnique[Shefer et al. 2005.

Recently much researchhas beenincorporatedwith the
theories of differential geomety [Levy et al. 2003 applied
the Cauchy-Riemanmquationfor meshparameterizatiomnd
provided successfulresults on the constrained2D parame-
terizationswith free boundaries[Desbrunet al. 2003 min-
imized the Dirichlet enegy de ned on triangle meshesfor
computing conformal parameterizationlt has been noted
that the approachof [Desbrunetal. 2003 has the same
expressional power with [Levy etal. 2003. Gu and Yau
[Gu and Yau 2003 computedthe conformal structureusing
the Hodgetheory A at metric of thegivensurfaceis induced
by computingthe holomorphic 1-form with a genus-related
number of singularities and used for obtaining a globally
smooth parameterization[Gortler et al. 200§ used discrete
1-forms for meshparameterizationTheir approachprovided
an interestingresult in mesh parameterizatiorwith several
holes,but they cannotcontrolthe curvaturesontheboundaries.
Ray et al. [Ray et al. 2005 usedthe holomorphicl-form to
follow up the principle curvatureson manifoldsand computed
a quad-dominatedparameterizationfrom arbitrary models.
Kharevych et al. [34] applied the theory of circle patterns
from [Bobenko and Springborn2004 to globally conformal
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parameterizationsThey obtain the uniform conformality by
preservingintersectionanglesamongthe circum-circleseach
of which is de ned from a triangle on the given mesh.
In their approach,the set of anglesis non-linearoptimized
rst, and then the solution is re ned with cooperatingge-
ometric constraints. They provide several parameterization
results,suchas2D parameterizatiowith prede nedboundary
cunatures,spherical parameterizationand globally smooth
parameterizationof a high genus model with introducing
singularity points. [Gu et al. 2005 used the discrete Ricci
ow [Chow andLuo 2003 for generatingmanifold splines
with a singleextraordinarypoint. The Ricci o w is utilized for
obtaining2D parameterizatiomf high-genusmodelsin their
paper

In theory theRicci o w [Chow and Luo 2003 andthevari-
ations with circle patterns[Bobenko and Springborn2004
have the samemathematicapower. However, becauseof the
simplicity of the implementationwe adoptthe Ricci ow as
a mathematicatool for the parameterizatioprocess.

In contrastto all previous approacheshe parameterization
spacesin our interestsare not only the 2D spacebut also
arbitrary hyperbolic spaces.As a result, we can provide
novel classesof applicationsin this paper such as param-
eterizationwith interior and exterior boundarieshaving pre-
scribedcurvatures PolyCube-mappingjuasi-conformatross-
parameterizationvith high-genussurfaces,and geometrysig-
natures.

I1l. THEORETIC BACKGROUND

In this section, we introduce the theories of conformal
geometry



A. RiemannSurface

SupposeS is a two dimensionaltopologicalmarsu'fold cov-
ered by a collection of open setsfUzg, S aUa. A
homeomorphisnf, :U; ! C mapsU, to the comple plane.
(Ua; f4) forms a local coordinatesystem.Supposewo open
setsU, and U, intersect,then eachpoint p2 U; U, has
two local coordinates the transformationbetweenthe local
coordinatess de ned asthe transition function

fab = fb fall fa(Ua\ Ub)' fb(Ub\ Ub): (1)

Supposea complex function f : C! C is holomorphig
if its derivative exists. If f is invertible, and f 1 is also
holomorphic,then f is called bi-holomorphic

De nition 1 (ConformalStructue): A two dimensional
topological manifold S with an atlas f(Ug;f3)g, if all
transition functions f ;;,'s are bi-holomorphic,then the atlas
is called a conformalatlas The union of all conformalatlas
is calledthe conformalstructue of S,

A surface with conformal structureis called a Riemann
surface.All metric surfacesare Riemannsurface.

B. UniformizationMetric

SupposeS is a C2 smooth surface embeddedn R2 with
parameter(u’;v?). The position vectoris r(u';u?), thentan-
gentvectoris dr = ridul+ rodu?, wherer4;r, arethe partial
derivativesof r with respectto u';u? respectiely. The length
of the tangentvector is representeds the r st fundamental
form

ds? = § gijdutdu? 2)
wheregij = < ri;rj >. The matrix (gij) is calledthe Rieman-
nian metric matrix.

A specialparameterizatiorcan be chosento simplify the
Riemannianmetric, suchthat g11 = g2» = € andgi> = 0,
suchparameteis calledthe isothermalcoorinates If all the
local coordinatesof an atlasare isothermalcoordinatesthen
theatlasis the conformalatlasof the surface.For all orientable
metric surfaces,suchatlasexist, namely

Theoem2 (RiemannSurface): All orientable metric sur
facesare Riemannsurfaces.

The Gausscurvatule measureshe deviation of a neighbor
hood of a point on the surfacefrom a plane,usingisothermal
coordinatesthe Gaussiarcurvatureis calculatedas

2
— ®

whereD is the Laplaceoperatoron the parametedomain.
Theoem 3 (Gauss-Bonnet)Supposea closed surface S,
the Riemannianmetric g induces the Gaussiancurvature

function K, thenthe total curvatureis determinedby
VA

KdA= 2pc(9);
s

K= DI ;

(4)

where c(9) is the Euler numberof S,

Supposeu: S!' R is a function de ned on the surface S,
thene?g is anotherRiemannianmetric on S. Given arbitrary
two tangentvectorsat one point, the anglebetweenthem can
be measuredy g or e2g, the two measurementare equal.

Thereforewe say e?'g is conformal (or angle preserving)to
g. (S g) and(S;e?g) areendaved with differentRiemannian
metricsbut the sameconformalstructure.

The following Poincaé uniformization theorem postulate
the existenceof the conformalmetric which inducesconstant
Gaussiarcurvature,

Theoem4 (Poincaré Uniformization): Let (S, g) beacom-
pact 2-dimensional Riemannianmanifold, then there is a
metric g conformalto g which hasconstantGausscurvature.
Sucha metric is called the uniformizationmetric. According
to Gauss-Bonnetheorem4, the sign of the constantGauss
cunatureis determinedby the Euler numberof the surface.
Therefore,all closedsurfacescanbe conformally mappedto
three canonicalsurfaces,the spherefor genuszero surfaces
¢ > 0, the plane for genusone surfacesc = 0, and the
hyperbolicspacefor high genussurfacesc < 0.

C. Holomorphic1-forms

Holomorphic and meromorphicfunctions can be de ned
on the Riemannsurfacevia conformalstructure Holomorphic
differential forms can alsobe de ned,

De nition 5 (holomorphicl-form): SupposeS is a Rie-
mannsurfacewith conformalatlasf (U, ;z2 g, wherez, is the
local coordinates Supposea complex differential form w is
represente@s

W= fa(za)dza;

where f; is a holomorphic function, then w is called a
holomorphicl-form.

Holomorphic 1-forms play important roles in computing
conformalstructures.

A holomobohicl—form canbeinterpretedasa pair of vector
elds, wy + 1ws,, such that the curl and divergence of
Wi; W, arezeros,

N w=0N w=0i=12

and
n wy= wy

everywhereon the surface.Both w; areharmonic1-forms the
following Hodge theoremclari es the existenceand unique-
nessof harmonicl-forms,

Theoem6 (Hodge): Eachcohomologouglassof 1-forms
hasa uniqgueharmonic1-form.

D. Ricci Flow

In geometric analysis, Ricci ow is a powerful tool to
computeRiemannianmetric. Recently Ricci ow is applied
to prove the Poincaé conjecture The Ricci o w is the process
to deform the metric g(t) accordingto its induced Gauss
cunatureK(t), wheret is the time parameter

G- ke ®

It is proventhatthe curvatureevolutioninducedby the Ricci

ow is exactly like heatdiffusion on the surface

K(®) _
dt

Dy K(1); (6)



where Dy is the Laplace-Beltramioperatorinducedby the
metricg(t). Ricci o w converges,the metricg(t) is conformal
to the original metric at ary time t. Eventually the Gauss
cunaturewill becometo constanfust like the heatdiffusion
K(¥) cong, the limit metric g(¥) is the uniformization
metric

E. Harmonic Maps

Supposes;; S aremetricsurfacesembeddedn R3. f : Sy !
S isamapfrom S to S,. The harmonicenegy of the map

is de ned as
Z

E(f)= < Nf;Nf > dA:
S

The critical point of the harmonicenepy is called the har-
monic maps
The normal componenbf the Laplacianis

DF? =< Df:n f>n;

If f is a harmonic map, then the tangent componentof
Laplacianvanishes,
Df = Df ?;

whereD is the Laplace-Beltramiperator
We candiffusea mapto a harmonicmap by the heat o w
method: df
—= (Df Df?):
- ¢ )

1V. COMPUTATIONAL ALGORITHMS

In practice,all surfacesare representeds simplicial com-
plexes embeddedn the Euclideanspace,namely triangular
meshesAll thealgorithmsarediscreteapproximation®f their
continuouscounterparts. We denotea meshby M, and use
vi to denoteits ith vertex, edgee;; for the edgeconnectingy;
andvj, and f;j for the triangleformedby v;;v; andv, which
are orderedcounterclock-wisely

If a meshM is with boundarieswe st corvertit to a
closedsymmetricmeshM by the following double covering
algorithm:

1) Make a copy meshM® of M.

2) Reversethe orientationof M? by changethe order of

verticesof eachface, fijk! fjik.

3) GlueM and MO alongtheir boundariego form a closed

meshM.

In the following discussionwe alwaysassumehe surfaces
are closed. We rst introduce harmonic maps method for
genuszerosurfaces thenholomorphicl-formsfor genusone
surfacesand nally Ricci o w methodfor high genussurfaces.

A. GenusZen Surfaces Harmonic Maps

For genuszero surfaces,the major algorithm to compute
their conformalmappingis harmonicmaps the basisproce-
dureis to diffuse a degree one map until the map becomes
harmonic.

1) Computethe normal of each face, then compute the

normal of each vertex as the average of normals of
neighboringfaces.

2) Setthemapf equalsto the Gaussmap,
f(vi) = ni;
3) Diffusethe mapby Heat o w actingon the maps
f(v) =(Df(w) Df(w)?)e
whereDf (vi))? is de ned as
< Df (vi); f(vi) > f(vi):

4) Normalizethe mapby set

f(vi) ¢
f(v) = —_— Y,
M= TFw) g
wherec is the masscenterde ned as
c= & f(v):

Vi
5) Repeatstep 2 and 3, until Df (v;)) is very closedto
Df (wi))? .
whereD is a discreteLaplaceoperatoy de ned as

Df (vi) = é wij(f(vi) f(w);
i

wherev; is a vertex adjacentto vi, wij is the edgeweight

~_ cota+ cotb)
s T
a;b arethe two anglesagainstedges;j.

The harmonicmapsf : M! 2 is also conformal. The
conformalmapsare not unique,supposef 1;f>: M ! S? are
two conformalmaps,thenfy f,1:S?1 2 is a conformal
map from sphereto itself, it must be a so-called Mobius
transformation.Supposewe map the sphereto the comple
planeby a stereo-graphicprojection

X+ 2 1y
. I .
(X,)’;Z) . 2 Z il
thenthe Mobiustransformatiorhasthe form
aw+ b

w! ad bc= l;a;b;c;d2 C:

cw+d’
The purposeof normalizationstepis to remose Mobius
ambiguity of the conformalmap from M to S2.
For genuszero open surfaces,the conformal mappingis
straightforward
1) Doublecover M°to get M.
2) Conformallymapthe doubledsurfaceto the unit sphere
3) Use the sphere Mdbius transformationto make the
mappingsymmetric.
4) Usestereographiprojectionto mapeachhemisphereo
the unit disk.
The Mobius transformationon the disk is also a conformal
map and with the form
W W |
1 W_OW, (7)
wherewy is arbitrary point inside the disk, theta is an angle.
Figure IV illustrates two conformal maps from the David

head surface to the unit disk, which differ by a Mobius
transformation.

w! dd



B. GenusOne Surfaces- Holomorphic1-forms

For genusone closed surfaces,we computethe basis of
holomorphic1-form group, which inducesthe conformalpa-
rameterizatiordirectly. A holomorphicl-form is formedby a
pair of harmonicl-formswy; w,, suchthat w, is conjugateto
W1.
In orderto computeharmonicl-forms,we needto compute
the homologybasisfor the surface.A homologybasecurve is
a consecutie halfedgeswhich form a closedloop. First we
computea cut graph of the mesh,then extract a homology
basisfrom the cut graph.Algorithm for cut graph:
1) ComputethedualmeshM, eachedgee2 M hasaunique
dual edgee2 M. L

2) Computea spanningtree T of M, which coversall the
verticesof M.

3) The cut graphis the union of all edgeswhosedual are
notin T, _

G=fe2 Mje62Tg:
Then,we can computehomologybasisfrom G,

1) Computea spanningtree T of G.

2) G
T="feje; e

3) [ T hasauniqueloop, denotedasg.

4) fag;0; ;g form ahomologybasisof M.
A harmonicl-formis represente@sa linear mapfrom the
halfedgeto thereal nu8mber w:fHalf Edgegy! R, suchthat
< wif 0
Rw 0 (8)
a w = G

where f representdoundaryoperatoy Tfijx = &+ ejk+ &,
thereforew T fijx = w(ej) + w(ej) + w(eg); Dw representshe
Laplacianof w,

Dw(vi) = & wijw(hij);

j

hij are the half edgesfrom v; to vj; fcig are prescribed
real numbers.lt canbe shavn that the solutionto the above
equationgroup exists and unique.

On eachfacef;jk thereexistsa uniquevectort, suchthaton
eachedge,w(hij) =< vj v;;t>; w(hj) =< v vj;t> and
w(hg) =< Vi Vvit>. Lett%= n t, then wYhij) =< v;
vi;t%> de nes anotherharmonic1-form, which is conjugate
to w, (w; w9 form a holomorphicl-form.

We cuta surfaceM alongits cut graphto getantopological
disk Dy, by gluing Dy consistentlywe canconstructa nite
portion of the universial covering spaceof M.

We thenintegratea holomorphicl-form to map Dy to the
planeconformallyin the following way:

1) Fix onevertex vp 2 Dy, andmapit to theorigin f (vp) =

(0;0).
2) For ary vertex v2 Dy, computethe shortespathg from
Vo to v iR Dy

3) F(V) = (gw; gWd.

We then visualize the holomorphic 1-forms by texture
mappinga checler boardonto Dy usingtexturecoordinated .
Figure IV-B demonstrateshe holomorphic 1-forms on three
differentsurfaces.

C. High GenusSurfaces Discrete Ricci ow

For high genus surfaces, we apply discrete Ricci ow
method to compute their uniformization metric and then
embedthemin the hyperbolicspace.

1) Circle Packing Metric: We associateachvertex v; with
a circle with radiusg. On edgesj, the two circles intersect
at the angleof Fij. The edgelengthsare

IZ = g+ of + 2ggj cosF

A circle packingmetricis denotedby f S;F ; Gg, whereS is
the triangulation,F the edgeangle,G the vertex radii.

Two circle packingmetricsf S;F 1; G g andf S;F»; Gg are
conformalequialent, if

Theradii of circlesaredifferent,G, 6 G,.
The intersectionanglesaresame,F1  Fo.

In practice, the circle radii and intersectionangles are
optimizedto approximatehe inducedEuclideanmetric of the
meshas closeas possible.

2) Poincaré Disk: According to Riemannuniformization
theorem,high genussurfacescan be conformally embedin
hyperbolicspacelnsteadof treateachtriangleasanEuclidean
triangle, we can treat eachtriangle as a hyperbolictriangle.
The hyperbolic spaceis representedusing Poincaré disk
which s the unit disk on the complex plane,with Riemannian

metric _
4dwadw

@ w?

Therigid motionin Poincaké disk is Mdbiustransformatiory.

The geodesicarecircle arcswhich are orthogonalto the unit

circle. A hyperboliccircle in Poincaé disk with centerc and

radiusr is alsoan Euclideancircle with cenzterr'g and regdius
1

n? .y i
R, suchthatC = % andR2 = jCj2 19 m=

ds? =

1 n?jg?’ g+1°
3) HyperbolicRicci Flow: Let
U = Iogtanh%; ©)]
thendiscretehyperbolicRicci ow is de ned as
dy -
d—t' =K K (10)

In fact,discreteRicci o w is thegradient o w of thefollowing
hyperbolicRicci enegy

z u g‘ —
flu= a(kK

Uo =1

Ki)dui; (11)



where n is the numberof edges,u= (u;;up; ;um), mis
the number of vertices. In practice, if we setK; 0 by
minimizing the Ricci enegy using Newton's method, the
hyperbolicuniformizationmetric canbe computedef ciently .

Once the hyperbolic metric for a meshis calculated,the
mesh can be attened face by face in the Poincaé disk.
Determining the position of a vertex in the Poincaé disk
is equivalentto nd the intersectionbetweentwo hyperbolic

circles, which can be corverted as nding the intersection

betweentwo Euclideancircles.

V. APPLICATIONS

Conformal geometry has broad applicationsin medical
imaging, computergraphics,geometricmodeling and mary
other elds.

A. ConformalBrain Mapping

Humancortex surfacesare highly corvoluted, it is dif cult
to analyzeandstudythem.By usingconformalmaps,we can
map the brain surfaceto the canonicalunit sphereand carry
out all the geometricprocessing,analysis,measuremenbn
the sphericaldomain. Becausethe conformal map preseres
anglestructure Jocal shapesarewell presered, it is valuable
for visualization purpose.Different cortical surfacescan be
automaticallyregisteredon the canonicalparameterdomain,
it is moreef cient to comparesurfacesusingconformalbrain
mapping.

Figure V-A illustratesan exampleof conformalbrain map-
ping. The cortical surfaceis reconstructedrom MRI images
and corvertedas a triangularmesh.

Fig. 3. ConformalBrain Mapping

B. Global ConformalParameterization

In computergraphics surfaceparameterizatioplaysanim-
portantrole for variousapplications suchastexture mapping,
texture synthesis.

Basically a surface is mappedto the plane, the planar
coordinateof eachvertex are usedas texture coordinateslt
is highly desirableto reducethe distortionbetweerthe texture
imageandthe geometricsurface.Conformalmappingis useful
becausdt is angle distortion free. Figure V-B illustratesan
examplefor texture mappingusing global conformalparame-
terizationof a genustwo surface.

Fig. 4. Texture mappingusing conformalmapping.

1A

Fig. 5. Manifold Splinesconstructedrom holomorphicl-form.

C. Manifold Splines

In geometricmodeling,corventionalsplinesarede ned on
the planardomains.lt is highly desirableto de ne splineson
surfaceswith arbitrary topologiesdirectly.

In order to de ne splines on manifolds, one needsto
computea specialatlas of the manifold, suchthat all chart
transition mapsare afne. Suchkind of atlas can be easily
constructedoy integratinga holomorphicl-form.

Figure V-C demonstrate®ne example of genus6 surface.
The holomorphicl-forminducesanafne atlaswith singular
ities, the planarpowell-sabinsplinesare de ned on the atlas
directly.

VI. AFFINE NORMAL

Many problemsin engineeringeld can be formulatedas
optimizationproblem.Supposef : R"! R is a differentiable
function, nding its critical pointsis the basictask.

Situated at ary point, a natural direction to choosefor
minimization is the steepestdescentdirection. This is the
direction along which the function is locally diminishingthe
mostrapidly. The steepestiescendirection canbe computed
from derivative information of f through the form  Nf.
Unfortunately while this direction is intuitively sound, it
shaws slow corvergence.

Newton's methodusequadraticapproximatiorat the origin,

f(x) x"N2f(0)x+ NfT(0)x+ c:



When the quadraticapproximationis taken at a point y, the
critical pointisatx=y (N2f(y) Nf(y), thereforeponeuse
X to replacey asthe next guessBYy iteration,the critical point
canbereachedNewton's methodquadraticallycorverges.But
it is expensve to computethe inverseof the secondderivative
matrices,the Hessianmatrices.

A. Afne Normal

Let M be a hypersuricein R™1, N is the normal vector
eld on M. Now if X andY arevector elds on M andDxY
is the at connectionon R™ 1, thenwe decompose

DxY = NxY + h(X;Y)N;

where NxY is the tangentialpart of DxY and h(X;Y) the
normal part, also known as the secondfundamentalform.
Furthermorejn this case,NxY is the Levi-Civita connection
of the Riemanniarmetric inducedby R™ ! on M.

We choosean arbitrary local frame eld e;;e; ;e, tan-
gentto M anddet(e;e; ;en1) = 1, we may dene h as
DxY = NyY + h(X;Y)ens 1, to arrive at the af ne metric

1
Mig=H m2hy;

whereH is the determinantdetf hyg. In this case,the af ne
normal eld is given by DM, where the Laplacianis with
respectto the afne metricll andM is the positionvector of
MM.

SupposeM is a level setsurfaceof the function f, we can

derive the afne normal eld as |

. fopa .
1 fll( nTr]prquq|+ n n+l—’|)
n

Hmz INTj
jNTj

wherethe coordinates; usedarerotatedsothatx,s 1 is in the
normaldirection.lt canbeshownvn thatwhenthehypersuréceis
anellipsoid,all af ne normalspoint towardsits centerin fact,
the afne normalsof the level setsof a quadraticpolynomial
will point toward the uniquecritical point, evenif that critical
point is unstable.

B. Afne Normal DescentAlgorithm

Using this afne normal eld, we can summarizeour

algorithmin the following steps,iteratedto corvergence:

1) Computethe af ne normal directionto the level set of
the function at the currentapproximationlocation.

2) Usealine searchto nd the minimum of the function
along that direction. This location senes as the new
approximation.

We call this the afne normal descentalgorithm. For the
guadratianinimizationproblem,dueto the natureof theaf ne
normalandthe ellipsoidallevel setsof f, the approximations
of this algorithmwill take on the valueof the exactminimum
after one iteration. Thus, the afne normal and the vector
(N2f) INf usedin Newton's methodare parallel to each
other in this case.This meanswe may view this algorithm
as an extension of the steepestdescentmethod, using the
af ne normaldirection,which pointsatthe centerof ellipsoids,
insteadof the steepestiescentdirection, which points at the

center of spheres.On the other hand, we may view it as
a relative of Newton's method,both exact for the quadratic
minimization problembut with differenthigher orderterms.

C. Efciency

In termsof computationatosts,we notethatthe previously
derived formula for the af ne normal direction requires rst,
second,and third derivatives of f, as well as inversion of
an n nn matrix of secondderivatives. While it may be
possibleto generateother forms or approximationsof the
afne normaldirectionthat simplify the inversionor diminish
the need of derivative information. Instead, we considera
differentviewpoint of the af ne normalto bypasshe needfor
suchinformation. Considera corvex hypersuréce,a point on
that surface,andthe tangentplanelocatedthere.Furthermore,
consider the class of planesintersectingwith the surface
and parallel to the tangentplane. On eachof theseplanes,
we look at the centerof gravity of the region enclosedby
the intersectionof the plane with the surface. The union
of thesecentersof gravity forms a curwe. It turns out that
the one-sidedtangentdirection of this curve at the point of
interestis theaf ne normalvector Thus,analternateapproach
for calculatingthe af ne normal vector involves calculating
centerof gravity, completelybypassingheneedfor derivative
information higher than that of the rst derivative which is
requiredfor tangentplanes.

D. ExperimentalResults

We testedour methodfor several casesandmeasurehe ac-
curag andefciency. For a ve-dimensionatorvex function,
let

5
f(x) = & (@ + sinx):
i=1
Let ( 0:2;0;0:4;1; 0:3) bethe startingpoint. The iterations
of our algorithm are shavn in Table VI-D, the algorithm
corvergeto the pooint

%

Fromthestatisticswe canseethattheaf ne normalmethod
is ef cient and practical.

0:4501835496147 !
0:4501835496T40
0:4501835496T39
0:4501835496725
0:4501835496T29

(o)

2:02669978966015
0:87543513107826
1:16211480429203
1:16232787552543
1:16232787579106
1:16232787579106

iPj pj

2:17147295853185
0:13960261665982
0:00003483822789
0:00001466875411
0:00000000001789

gl B W N | O—

TABLE |
FIVE-DIMENSIONAL RESULT: IN THIS FIVE-DIMENSIONAL EXAMPLE,
CONVERGENCE IS ACHIEVED AFTER 5 ITERATIONS.



VIlI. CONCLUSION

This paperintroducessomealgorithmsinspiredby geomet-
ric insights.

We rst introduce a seriesof computationalalgorithms
to compute conformal Riemannianmetrics on surfaces,es-
pecially the uniformization metrics. The algorithmsinclude
harmonicmaps,holomorphicl-forms and surface Ricci ow
on discretemeshesThe methodsareappliedfor variousappli-
cationsin computergraphics medicalimagingandgeometric
modeling.

In the future, we will generalizethesealgorithmsfor dis-
crete 3-manifoldsrepresenteds tetrahedraimeshes.

Second,we introduce an ef cient optimization algorithm
basedon af ne differential geometry which reachescirtical
point for quadratic functions in one step. The method is
practical and efcient. In the future, we will improve the
methodfor computingafne normals.
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Fig. 1. Accordingto RiemannMapping theorem,a topological disk can be conformally mappedto the unit disk. Two such conformalmapsdiffer by a
Mobius transformationof the unit disk

Fig. 2. Holomorphicl-formson differentsurfaces.



