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Abstract— In this work, we intr oduce two set of algorithms
inspired by the ideas fr om modern geometry. One is computa-
tional conformal geometry method, including harmonic maps,
holomorphic 1-forms and Ricci �o w. The other one is optimiza-
tion method using af�ne normals.

In the �rst part, we focuson conformal geometry. Conformal
structur e is a natural structur e of metric surfaces.The concepts
and methods fr om conformal geometry play important roles
for real applications in scienti�c computing, computer graphics,
computer vision and medical imaging �elds.

This work systematically intr oduces the concepts, methods
for numerically computing conformal structur es inspired by
conformal geometry. The algorithms are theoretically rigor ous
and practically ef�cient.

We demonstrate the algorithms by real applications, such as
surface matching, global conformal parameterization, conformal
brain mapping etc.

In the secondpart, we consider minimization of a real-valued
function f over Rn+ 1 and study the choiceof the af�ne normal of
the level set hypersurfacesof f as a dir ection for minimization.
The af�ne normal vector arises in af�ne differ ential geometry
when answeringthe questionof what hypersurfacesare invariant
under unimodular af�ne transformations. It can be computed at
points of a hypersurface fr om local geometry or, in an alternate
description, centers of gravity of slices. In the casewhere f is
quadratic, the line passingthr oughany chosenpoint parallel to its
af�ne normal will passthr ough the critical point of f . We study
numerical techniquesfor calculating af�ne normal dir ections of
level set surfacesof convex f for minimization algorithms.

Index Terms— Conformal geometry, holomorphic 1-form, har-
monic maps, Ricci �o w, global conformal parametrization, Con-
formal brain mapping,

I . INTRODUCTION

Conformal structureis a natural geometricstructureof a
metric surface. It is more �e xible than Riemannianmetric
structureandmorerigid thantopologicalstructure,thereforeit
hasadvantagesfor many importantengineeringapplications.

The �rst example is from computergraphics.Surfacepa-
rameterizationrefersto the processto mapa surfaceonto the
planardomains,which plays a fundamentalrole in graphics
andvisualizationfor the purposeof texture mapping.Surface
parameterizationcan be reformulatedas �nding a special
Riemannianmetric with zeroGaussiancurvatureeverywhere,
namelya �at metric. If the parameterizationis known, then
pull back metric induced by the map is the �at metric;
conversely, if a �at metric of the surfaceis known, then the
surfacecan be �attened onto the planeisometricly to induce
the parameterization.

Thesecondexampleis from geometricmodeling.Construct-
ing manifold splineson a surface is an important issuefor
modeling.In order to de�ne parametersand the knots of the

spline,specialatlasof thesurfaceis requiredsuchthatall local
coordinatetransition mapsare af�ne. One way to construct
suchan atlasis as follows, �rst a �at metric of the surfaceis
found, thena collectionof opensetsare locatedto cover the
whole surface,�nally eachopenset is �attened usingthe �at
metric to form the atlas.

The third example is from medical imaging. The human
brain cortex surfaceis highly convolved. In order to compare
and register brain cortex surfaces,it is highly desirableto
canonicallymap them to the unit sphere.This is equivalent
to �nd a Riemannianmetric on the cortex surface, such
that the Gaussiancurvatureinducedby this metric equalsto
one everywhere.Once such a metric is obtained,the cortex
surfacecanbecoherentlygluedontothespherepieceby piece
isometricly.

For mostapplications,the desiredmetricsshouldminimize
the angledistortion and the areadistortion.The anglesmea-
suredby the new metric shouldbe consistentwith thosemea-
suredby theoriginal metric.Theexistenceof suchmetricscan
be summariedas Riemannuniformization theorem.Finding
thosemetricsis equivalentto computesurfaceconformalstruc-
ture. Therefore,it is of fundamentalimportanceto compute
conformalstructuresof generalsurfaces.

In moderngeometry, conformal geometryof surfacesare
studiedin Riemannsurfacetheory. Riemannsurfacetheoryis
a rich andmature�eld, it is the intersectionof many subjects,
such as algebraicgeometry, algebraic topology, differential
geometry, complex geometryetc. This work focuseson con-
vertingtheoreticresultsin Riemannsurfacetheoryto practical
algorithms.

I I . PREVIOUS WORKS

Much researchhasbeendoneonmeshparameterizationdue
to its usefulnessin computergraphicsapplications.Thesurvey
of [FloaterandHormann2005] providesexcellentreviews on
variouskinds of meshparameterizationtechniques.Here,we
brie�y discuss the previous work on the conformal mesh
parameterization.

Several researcheson conformal mesh parameterization
tried to discretizethenatureof theconformalitysuchthatany
intersectionangleatany pointonagivenmanifoldis preserved
on the parameterizedone at the correspondingpoint. Floater
[Floater1997] introduceda meshparameterizationtechnique
basedon convex combinations.For each vertex, its 1-ring
stencil is parameterizedinto a local parameterizationspace
while preservingangles,and then the convex combinationof
the vertex is computedin the local parameterizationspaces.
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The overall parameterizationis obtainedby solving a sparse
linear system.[Sheffer andde Sturler2001] presenteda con-
strainedminimizationapproach,so calledangle-based�atten-
ing (ABF), suchthat thevariationbetweenthesetof anglesof
an original meshandoneof 2D �atten versionis minimized.
In order to obtain a valid and �ipping-free parameterization,
several angular and geometric constraintsare incorporated
with the minimization processes.Lately, they improved the
performanceof ABF by usinganadvancednumericalapproach
anda hierarchicaltechnique[Sheffer et al. 2005].

Recently, much researchhas been incorporatedwith the
theories of differential geomety. [Levy et al. 2002] applied
the Cauchy-Riemannequationfor meshparameterizationand
provided successfulresults on the constrained2D parame-
terizationswith free boundaries.[Desbrunet al. 2002] min-
imized the Dirichlet energy de�ned on triangle meshesfor
computing conformal parameterization.It has been noted
that the approach of [Desbrunet al. 2002] has the same
expressional power with [Levy et al. 2002]. Gu and Yau
[Gu andYau 2003] computedthe conformal structureusing
theHodgetheory. A �at metricof thegivensurfaceis induced
by computingthe holomorphic1-form with a genus-related
number of singularities and used for obtaining a globally
smooth parameterization.[Gortler et al. 2005] used discrete
1-forms for meshparameterization.Their approachprovided
an interesting result in mesh parameterizationwith several
holes,but they cannotcontrolthecurvatureson theboundaries.
Ray et al. [Ray et al. 2005] usedthe holomorphic1-form to
follow up theprinciplecurvatureson manifoldsandcomputed
a quad-dominatedparameterizationfrom arbitrary models.
Kharevych et al. [34] applied the theory of circle patterns
from [Bobenko andSpringborn2004] to globally conformal

parameterizations.They obtain the uniform conformality by
preservingintersectionanglesamongthe circum-circleseach
of which is de�ned from a triangle on the given mesh.
In their approach,the set of anglesis non-linearoptimized
�rst, and then the solution is re�ned with cooperatingge-
ometric constraints.They provide several parameterization
results,suchas2D parameterizationwith prede�nedboundary
curvatures,sphericalparameterization,and globally smooth
parameterizationof a high genus model with introducing
singularity points. [Gu et al. 2005] used the discrete Ricci
�o w [Chow andLuo 2003] for generatingmanifold splines
with a singleextraordinarypoint.TheRicci �o w is utilized for
obtaining2D parameterizationof high-genusmodelsin their
paper.

In theory, theRicci �o w [Chow andLuo 2003] andthevari-
ations with circle patterns [Bobenko andSpringborn2004]
have the samemathematicalpower. However, becauseof the
simplicity of the implementation,we adoptthe Ricci �o w as
a mathematicaltool for the parameterizationprocess.

In contrastto all previous approaches,the parameterization
spacesin our interestsare not only the 2D spacebut also
arbitrary hyperbolic spaces.As a result, we can provide
novel classesof applicationsin this paper, such as param-
eterizationwith interior and exterior boundarieshaving pre-
scribedcurvatures,PolyCube-mapping,quasi-conformalcross-
parameterizationwith high-genussurfaces,andgeometrysig-
natures.

I I I . THEORETIC BACKGROUND

In this section, we introduce the theories of conformal
geometry.
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A. RiemannSurface

SupposeS is a two dimensionaltopologicalmanifold cov-
ered by a collection of open sets f Ua g, S �

S
a Ua . A

homeomorphismf a : Ua ! C mapsUa to thecomplex plane.
(Ua ; f a ) forms a local coordinatesystem.Supposetwo open
setsUa and Ub intersect,then eachpoint p 2 Ua

T
Ub has

two local coordinates,the transformationbetweenthe local
coordinatesis de�ned as the transition function

f a b := f b � f � 1
a : f a (Ua \ Ub ) ! f b (Ub \ Ub ): (1)

Supposea complex function f : C ! C is holomorphic,
if its derivative exists. If f is invertible, and f � 1 is also
holomorphic,then f is calledbi-holomorphic.

De�nition 1 (ConformalStructure): A two dimensional
topological manifold S with an atlas f (Ua ; f a )g, if all
transition functions f a b 's are bi-holomorphic,then the atlas
is called a conformalatlas. The union of all conformalatlas
is called the conformalstructure of S.

A surface with conformal structure is called a Riemann
surface.All metric surfacesareRiemannsurface.

B. UniformizationMetric

SupposeS is a C2 smoothsurface embeddedin R3 with
parameter(u1;v2). The position vector is r (u1;u2), then tan-
gentvector is dr = r 1du1 + r2du2, wherer1; r2 arethe partial
derivativesof r with respectto u1;u2 respectively. The length
of the tangentvector is representedas the �r st fundamental
form

ds2 = å gi jdu1du2 (2)

wheregi j = < r i ; r j > . The matrix (gi j ) is called the Rieman-
nian metric matrix.

A specialparameterizationcan be chosento simplify the
Riemannianmetric, such that g11 = g22 = e2l and g12 = 0,
suchparameteris calledthe isothermalcoordinates. If all the
local coordinatesof an atlasare isothermalcoordinates,then
theatlasis theconformalatlasof thesurface.For all orientable
metric surfaces,suchatlasexist, namely

Theorem2 (RiemannSurface): All orientable metric sur-
facesareRiemannsurfaces.

The Gausscurvature measuresthe deviation of a neighbor-
hoodof a point on the surfacefrom a plane,usingisothermal
coordinates,the Gaussiancurvatureis calculatedas

K = �
2

e2l Dl ; (3)

whereD is the Laplaceoperatoron the parameterdomain.
Theorem3 (Gauss-Bonnet):Supposea closed surface S,

the Riemannianmetric g induces the Gaussiancurvature
function K, then the total curvatureis determinedby

Z

S
KdA = 2pc (S); (4)

wherec (S) is the Euler numberof S.
Supposeu : S! R is a function de�ned on the surfaceS,

thene2ug is anotherRiemannianmetric on S. Given arbitrary
two tangentvectorsat onepoint, the anglebetweenthemcan
be measuredby g or e2ug, the two measurementsare equal.

Thereforewe say e2ug is conformal(or anglepreserving)to
g. (S;g) and(S;e2ug) areendowedwith differentRiemannian
metricsbut the sameconformalstructure.

The following Poincaŕe uniformization theorempostulate
the existenceof the conformalmetric which inducesconstant
Gaussiancurvature,

Theorem4 (Poincaré Uniformization): Let (S;g) beacom-
pact 2-dimensionalRiemannianmanifold, then there is a
metric ḡ conformalto g which hasconstantGausscurvature.
Sucha metric is called the uniformizationmetric. According
to Gauss-Bonnettheorem4, the sign of the constantGauss
curvatureis determinedby the Euler numberof the surface.
Therefore,all closedsurfacescan be conformally mappedto
three canonicalsurfaces,the spherefor genuszero surfaces
c > 0, the plane for genus one surfaces c = 0, and the
hyperbolicspacefor high genussurfacesc < 0.

C. Holomorphic1-forms

Holomorphic and meromorphicfunctions can be de�ned
on theRiemannsurfacevia conformalstructure.Holomorphic
differential forms canalsobe de�ned,

De�nition 5 (holomorphic1-form): SupposeS is a Rie-
mannsurfacewith conformalatlasf (Ua ;za g, whereza is the
local coordinates.Supposea complex differential form w is
representedas

w = fa (za )dza ;

where fa is a holomorphic function, then w is called a
holomorphic1-form.

Holomorphic 1-forms play important roles in computing
conformalstructures.

A holomorphic1-form canbeinterpretedasa pair of vector
�elds, w1 +

p
� 1w2, such that the curl and divergenceof

w1;w2 arezeros,

Ñ � wi = 0;Ñ � wi = 0; i = 1;2;

and
n � w1 = w2;

everywhereon thesurface.Both wi areharmonic1-forms, the
following Hodgetheoremclari�es the existenceand unique-
nessof harmonic1-forms,

Theorem6 (Hodge): Eachcohomologousclassof 1-forms
hasa uniqueharmonic1-form.

D. Ricci Flow

In geometric analysis, Ricci �ow is a powerful tool to
computeRiemannianmetric. Recently, Ricci �o w is applied
to prove thePoincaŕe conjecture.TheRicci �o w is theprocess
to deform the metric g(t) according to its induced Gauss
curvatureK(t), wheret is the time parameter

dgi j (t)
dt

= � K(t)gi j (t): (5)

It is proventhatthecurvatureevolution inducedby theRicci
�o w is exactly like heatdiffusion on the surface

K(t)
dt

= � Dg(t)K(t); (6)
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whereDg(t) is the Laplace-Beltramioperatorinducedby the
metricg(t). Ricci �o w converges,themetricg(t) is conformal
to the original metric at any time t. Eventually, the Gauss
curvaturewill becometo constantjust like the heatdiffusion
K(¥ ) � const, the limit metric g(¥ ) is the uniformization
metric.

E. HarmonicMaps

SupposeS1;S2 aremetricsurfacesembeddedin R3. f : S1 !
S2 is a map from S1 to S2. The harmonicenergy of the map
is de�ned as

E(f ) =
Z

S1

< Ñf ;Ñf > dA:

The critical point of the harmonicenergy is called the har-
monicmaps.

The normalcomponentof the Laplacianis

Df ? = < Df ;n � f > n;

If f is a harmonic map, then the tangent componentof
Laplacianvanishes,

Df = Df ? ;

whereD is the Laplace-Beltramioperator.
We candiffusea mapto a harmonicmapby the heat�o w

method:
df
dt

= � (Df � Df ? ):

IV. COMPUTATIONAL ALGORITHMS

In practice,all surfacesare representedas simplicial com-
plexes embeddedin the Euclideanspace,namely, triangular
meshes.All thealgorithmsarediscreteapproximationsof their
continuouscounterparts.We denotea meshby M, and use
vi to denoteits ith vertex, edgeei j for the edgeconnectingvi
andv j , and fi jk for the triangleformedby vi ;v j andvk, which
areorderedcounter-clock-wisely.

If a mesh M is with boundaries,we �st convert it to a
closedsymmetricmeshM̄ by the following doublecovering
algorithm:

1) Make a copy meshM0 of M.
2) Reversethe orientationof M0 by changethe order of

verticesof eachface, fi jk ! f j ik.
3) Glue M andM0 alongtheir boundariesto form a closed

meshM̄.
In the following discussion,we alwaysassumethesurfaces

are closed. We �rst introduce harmonic maps method for
genuszerosurfaces,thenholomorphic1-formsfor genusone
surfacesand�nally Ricci �o w methodfor high genussurfaces.

A. GenusZero Surfaces- HarmonicMaps

For genuszero surfaces,the major algorithm to compute
their conformalmappingis harmonicmaps, the basisproce-
dure is to diffuse a degreeone map until the map becomes
harmonic.

1) Compute the normal of each face, then compute the
normal of each vertex as the averageof normals of
neighboringfaces.

2) Set the mapf equalsto the Gaussmap,

f (vi ) = ni ;

3) Diffuse the mapby Heat �o w actingon the maps

f (vi )� = (Df (vi ) � Df (vi)? )e

whereDf (vi))? is de�ned as

< Df (vi ); f (vi ) > f (vi):

4) Normalizethe mapby set

f (vi ) =
f (vi ) � c
jf (vi ) � cj

;

wherec is the masscenterde�ned as

c = å
vi

f (vi ):

5) Repeatstep 2 and 3, until Df (vi )) is very closed to
Df (vi))? .

whereD is a discreteLaplaceoperator, de�ned as

Df (vi ) = å
j

wi j (f (vi ) � f (vi)) ;

wherev j is a vertex adjacentto vi , wi j is the edgeweight

wi j =
cota + cotb)

2
;

a ;b are the two anglesagainstedgeei j .
The harmonic maps f : M ! S2 is also conformal. The

conformalmapsare not unique,supposef 1; f 2 : M ! S2 are
two conformalmaps,then f 1 � f � 1

2 : S2 ! S2 is a conformal
map from sphereto itself, it must be a so-calledMöbius
transformation.Supposewe map the sphereto the complex
planeby a stereo-graphicsprojection

(x;y;z) !
2x+ 2

p
� 1y

2� z
;

then the Möbius transformationhasthe form

w !
aw+ b
cw+ d

;ad� bc= 1;a;b;c;d 2 C:

The purposeof normalizationstep is to remove Möbius
ambiguityof the conformalmapfrom M to S2.

For genuszero open surfaces,the conformal mapping is
straightforward

1) Doublecover M0 to get M̄.
2) Conformallymapthedoubledsurfaceto theunit sphere
3) Use the sphere Möbius transformationto make the

mappingsymmetric.
4) Usestereographicprojectionto mapeachhemisphereto

the unit disk.
The Möbius transformationon the disk is also a conformal
mapandwith the form

w ! eiq w� w0

1� w̄0w
; (7)

wherew0 is arbitrarypoint inside the disk, theta is an angle.
Figure IV illustrates two conformal maps from the David
head surface to the unit disk, which differ by a Möbius
transformation.



5

B. GenusOneSurfaces- Holomorphic1-forms

For genusone closed surfaces,we computethe basis of
holomorphic1-form group,which inducesthe conformalpa-
rameterizationdirectly. A holomorphic1-form is formedby a
pair of harmonic1-formsw1;w2, suchthat w2 is conjugateto
w1.

In orderto computeharmonic1-forms,we needto compute
thehomologybasisfor thesurface.A homologybasecurve is
a consecutive halfedges,which form a closedloop. First we
computea cut graph of the mesh,then extract a homology
basisfrom the cut graph.Algorithm for cut graph:

1) ComputethedualmeshM̄, eachedgee2 M hasaunique
dual edgeē2 M̄.

2) Computea spanningtree T̄ of M̄, which coversall the
verticesof M̄.

3) The cut graphis the union of all edgeswhosedual are
not in T̄,

G = f e2 Mjē62T̄g:

Then,we cancomputehomologybasisfrom G,
1) Computea spanningtreeT of G.
2) G

T = f e1;e2; � � � ;eng.
3) ei [ T hasa uniqueloop, denotedasgi .
4) f g1;g2; � � � ;gng form a homologybasisof M.
A harmonic1-form is representedasa linear mapfrom the

halfedgeto therealnumber, w : f Hal f Edgesg ! R, suchthat
8
<

:

w¶ f � 0
Dw � 0R

gi
w = ci

(8)

where¶ representsboundaryoperator, ¶ fi jk = ei j + ejk + eki ,
thereforew¶ fi jk = w(ei j )+ w(ejk)+ w(eki ); Dw representsthe
Laplacianof w,

Dw(vi) = å
j

wi j w(hi j );

hi j are the half edgesfrom vi to v j ; f cig are prescribed
real numbers.It can be shown that the solution to the above
equationgroupexists andunique.

On eachface fi jk thereexistsa uniquevectort, suchthaton
eachedge,w(hi j ) = < v j � vi ; t >; w(h jk) = < vk � v j ; t > and
w(hki) = < vi � vk; t > . Let t0= n � t, then w0(hi j ) = < v j �
vi ; t0> de�nes anotherharmonic1-form, which is conjugate
to w, (w;w0) form a holomorphic1-form.

We cut a surfaceM alongits cut graphto getantopological
disk DM, by gluing DM consistently, we canconstructa �nite
portion of the universialcovering spaceof M.

We then integratea holomorphic1-form to mapDM to the
planeconformally in the following way:

1) Fix onevertex v0 2 DM, andmapit to theorigin f (v0) =
(0;0).

2) For any vertex v2 DM, computetheshortestpathg from
v0 to v in DM,

3) f (v) = (
R

gw;
R

gw0).
We then visualize the holomorphic 1-forms by texture

mappinga checkerboardontoDM usingtexturecoordinatesf .
Figure IV-B demonstratesthe holomorphic1-forms on three
differentsurfaces.

C. High GenusSurfaces- DiscreteRicci �ow

For high genus surfaces, we apply discrete Ricci �o w
method to compute their uniformization metric and then
embedthemin the hyperbolicspace.

1) Circle Packing Metric: We associateeachvertex vi with
a circle with radiusgi . On edgeei j , the two circles intersect
at the angleof F i j . The edgelengthsare

l2i j = g2
i + g2

j + 2gigj cosF i j

A circle packingmetric is denotedby f S;F ;Gg, whereS is
the triangulation,F the edgeangle,G the vertex radii.

PSfragreplacements
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Two circle packingmetricsf S;F 1;G1g andf S;F 2;G2g are
conformalequivalent,if

� The radii of circlesaredifferent,G1 6= G2.
� The intersectionanglesaresame,F 1 � F 2.

In practice, the circle radii and intersection angles are
optimizedto approximatethe inducedEuclideanmetricof the
meshascloseaspossible.

2) Poincaré Disk: According to Riemannuniformization
theorem,high genussurfacescan be conformally embedin
hyperbolicspace.Insteadof treateachtriangleasanEuclidean
triangle, we can treat eachtriangle as a hyperbolic triangle.
The hyperbolic space is representedusing Poincaré disk,
which is theunit disk on thecomplex plane,with Riemannian
metric

ds2 =
4dwdw̄

(1� w̄w)2 :

Therigid motion in Poincaŕe disk is Möbiustransformation7.
The geodesicsarecircle arcswhich areorthogonalto the unit
circle. A hyperboliccircle in Poincaŕe disk with centerc and
radiusr is also an Euclideancircle with centerC and radius
R, suchthat C = 2� 2m2

1� m2jcj2
andR2 = jCj2 � jcj2� m2

1� m2jcj2
,m= er � 1

er + 1.
3) HyperbolicRicci Flow: Let

ui = logtanh
gi

2
; (9)

thendiscretehyperbolicRicci �o w is de�ned as

dui

dt
= K̄i � Ki : (10)

In fact,discreteRicci �o w is thegradient�o w of thefollowing
hyperbolicRicci energy

f (u) =
Z u

u0

n

å
i= 1

(K̄i � Ki)dui ; (11)
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where n is the numberof edges,u = (u1;u2; � � � ;um), m is
the number of vertices. In practice, if we set K̄i � 0 by
minimizing the Ricci energy using Newton's method, the
hyperbolicuniformizationmetric canbe computedef�ciently .

Once the hyperbolic metric for a mesh is calculated,the
mesh can be �attened face by face in the Poincaŕe disk.
Determining the position of a vertex in the Poincaŕe disk
is equivalent to �nd the intersectionbetweentwo hyperbolic
circles, which can be converted as �nding the intersection
betweentwo Euclideancircles.

V. APPLICATIONS

Conformal geometry has broad applications in medical
imaging, computergraphics,geometricmodeling and many
other �elds.

A. ConformalBrain Mapping

Humancortex surfacesarehighly convoluted,it is dif�cult
to analyzeandstudythem.By usingconformalmaps,we can
map the brain surfaceto the canonicalunit sphereand carry
out all the geometricprocessing,analysis,measurementon
the sphericaldomain.Becausethe conformal map preserves
anglestructure,local shapesarewell preserved, it is valuable
for visualizationpurpose.Different cortical surfacescan be
automaticallyregisteredon the canonicalparameterdomain,
it is moreef�cient to comparesurfacesusingconformalbrain
mapping.

FigureV-A illustratesan exampleof conformalbrain map-
ping. The cortical surfaceis reconstructedfrom MRI images
andconvertedasa triangularmesh.

Fig. 3. ConformalBrain Mapping

B. Global ConformalParameterization

In computergraphics,surfaceparameterizationplaysanim-
portantrole for variousapplications,suchastexturemapping,
texture synthesis.

Basically, a surface is mappedto the plane, the planar
coordinatesof eachvertex are usedas texture coordinates.It
is highly desirableto reducethedistortionbetweenthetexture
imageandthegeometricsurface.Conformalmappingis useful
becauseit is angle distortion free. Figure V-B illustratesan
examplefor texture mappingusingglobal conformalparame-
terizationof a genustwo surface.

Fig. 4. Texture mappingusingconformalmapping.

Fig. 5. Manifold Splinesconstructedfrom holomorphic1-form.

C. Manifold Splines

In geometricmodeling,conventionalsplinesarede�ned on
the planardomains.It is highly desirableto de�ne splineson
surfaceswith arbitrary topologiesdirectly.

In order to de�ne splines on manifolds, one needs to
computea specialatlas of the manifold, such that all chart
transition mapsare af�ne. Such kind of atlas can be easily
constructedby integratinga holomorphic1-form.

Figure V-C demonstratesone exampleof genus6 surface.
Theholomorphic1-form inducesanaf�ne atlaswith singular-
ities, the planarpowell-sabinsplinesare de�ned on the atlas
directly.

VI . AFFINE NORMAL

Many problemsin engineering�eld can be formulatedas
optimizationproblem.Supposef : Rn ! R is a differentiable
function, �nding its critical points is the basictask.

Situated at any point, a natural direction to choosefor
minimization is the steepestdescentdirection. This is the
direction along which the function is locally diminishing the
mostrapidly. The steepestdescentdirectioncanbe computed
from derivative information of f through the form � Ñ f .
Unfortunately, while this direction is intuitively sound, it
shows slow convergence.

Newton's methodusequadraticapproximationat theorigin,

f (x) � xTÑ2 f (0)x + Ñf T (0)x + c:
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When the quadraticapproximationis taken at a point y, the
critical point is at x = y � (Ñ2 f (y)� 1Ñf (y), therefore,oneuse
x to replacey asthenext guess.By iteration,thecritical point
canbereached.Newton'smethodquadraticallyconverges.But
it is expensive to computethe inverseof thesecondderivative
matrices,the Hessianmatrices.

A. Af�ne Normal

Let M be a hypersurfacein Rn+ 1, N is the normal vector
�eld on M. Now if X andY arevector �elds on M andDXY
is the �at connectionon Rn+ 1, thenwe decompose

DXY = ÑXY + h(X;Y)N;

where ÑXY is the tangentialpart of DXY and h(X;Y) the
normal part, also known as the secondfundamentalform.
Furthermore,in this case,ÑXY is the Levi-Civita connection
of the Riemannianmetric inducedby Rn+ 1 on M.

We choosean arbitrary local frame �eld e1;e2; � � � ;en tan-
gent to M and det(e1;e2; � � � ;en+ 1) = 1, we may de�ne h as
DXY = ÑXY + h(X;Y)en+ 1, to arrive at the af�ne metric

I Iik = H � 1
n+ 2 hik;

whereH is the determinantdetf hikg. In this case,the af�ne
normal �eld is given by DM, where the Laplacian is with
respectto the af�ne metric I I andM is the positionvectorof
MM.

SupposeM is a level setsurfaceof the function f , we can
derive the af�ne normal �eld as

H
1

n+ 2

 
f i j (� n

n+ 2 f pq fpqi + n
fn+ 1;i
jÑ f j )

� n
jÑ f j

!

;

wherethecoordinatesxi usedarerotatedso thatxn+ 1 is in the
normaldirection.It canbeshown thatwhenthehypersurfaceis
anellipsoid,all af�ne normalspoint towardsits center. in fact,
the af�ne normalsof the level setsof a quadraticpolynomial
will point toward theuniquecritical point, even if that critical
point is unstable.

B. Af�ne Normal DescentAlgorithm

Using this af�ne normal �eld, we can summarizeour
algorithmin the following steps,iteratedto convergence:

1) Computethe af�ne normal direction to the level set of
the function at the currentapproximationlocation.

2) Use a line searchto �nd the minimum of the function
along that direction. This location serves as the new
approximation.

We call this the af�ne normal descentalgorithm. For the
quadraticminimizationproblem,dueto thenatureof theaf�ne
normalandthe ellipsoidal level setsof f , the approximations
of this algorithmwill take on the valueof theexact minimum
after one iteration. Thus, the af�ne normal and the vector
� (Ñ2 f )� 1Ñf usedin Newton's methodare parallel to each
other in this case.This meanswe may view this algorithm
as an extension of the steepestdescentmethod, using the
af�ne normaldirection,whichpointsat thecenterof ellipsoids,
insteadof the steepestdescentdirection, which points at the

center of spheres.On the other hand, we may view it as
a relative of Newton's method,both exact for the quadratic
minimizationproblembut with differenthigherorder terms.

C. Ef�ciency

In termsof computationalcosts,we notethat thepreviously
derived formula for the af�ne normal direction requires�rst,
second,and third derivatives of f , as well as inversion of
an n � nn matrix of secondderivatives. While it may be
possible to generateother forms or approximationsof the
af�ne normaldirectionthat simplify the inversionor diminish
the need of derivative information. Instead,we considera
differentviewpoint of theaf�ne normalto bypasstheneedfor
suchinformation.Considera convex hypersurface,a point on
thatsurface,andthe tangentplanelocatedthere.Furthermore,
consider the class of planes intersectingwith the surface
and parallel to the tangentplane. On eachof theseplanes,
we look at the centerof gravity of the region enclosedby
the intersectionof the plane with the surface. The union
of thesecentersof gravity forms a curve. It turns out that
the one-sidedtangentdirection of this curve at the point of
interestis theaf�ne normalvector. Thus,analternateapproach
for calculatingthe af�ne normal vector involves calculating
centersof gravity, completelybypassingtheneedfor derivative
information higher than that of the �rst derivative which is
requiredfor tangentplanes.

D. ExperimentalResults

We testedour methodfor severalcasesandmeasuretheac-
curacy andef�ciency. For a � ve-dimensionalconvex function,
let

f (x) =
5

å
i= 1

(x2
i + sinxi):

Let (� 0:2;0;0:4;1; � 0:3) be the startingpoint. The iterations
of our algorithm are shown in Table VI-D, the algorithm
converge to the point

0

B
B
B
B
@

� 0:45018354967147
� 0:45018354967140
� 0:45018354967139
� 0:45018354967125
� 0:45018354967129

1

C
C
C
C
A

Fromthestatistics,wecanseethattheaf�ne normalmethod
is ef�cient andpractical.

j f ( pj ) jpj � pj � 1j
0 2:02669978966015
1 � 0:87543513107826 2:17147295853185
2 � 1:16211480429203 0:13960261665982
3 � 1:16232787552543 0:00003483822789
4 � 1:16232787579106 0:00001466875411
5 � 1:16232787579106 0:00000000001789

TABLE I

FIVE-DIMENSIONAL RESULT: IN THIS FIVE-DIMENSIONAL EXAMPLE,

CONVERGENCE IS ACHIEVED AFTER 5 I TERATIONS.
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VII . CONCLUSION

This paperintroducessomealgorithmsinspiredby geomet-
ric insights.

We �rst introduce a series of computationalalgorithms
to computeconformal Riemannianmetrics on surfaces,es-
pecially the uniformization metrics. The algorithms include
harmonicmaps,holomorphic1-forms and surfaceRicci �o w
on discretemeshes.Themethodsareappliedfor variousappli-
cationsin computergraphics,medicalimagingandgeometric
modeling.

In the future, we will generalizethesealgorithmsfor dis-
crete3-manifoldsrepresentedas tetrahedralmeshes.

Second,we introduce an ef�cient optimization algorithm
basedon af�ne differential geometry, which reachescirtical
point for quadratic functions in one step. The method is
practical and ef�cient. In the future, we will improve the
methodfor computingaf�ne normals.
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Fig. 1. According to RiemannMapping theorem,a topologicaldisk can be conformally mappedto the unit disk. Two suchconformalmapsdiffer by a
Möbius transformationof the unit disk

Fig. 2. Holomorphic1-formson different surfaces.


